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1 Introduction

In the vast majority of scientific/engineering problems, the ordinary and/or
partial differential equations play a special role. The rigorous description
of these differential equations is very difficult in general. Moreover, for
practical purposes, the computational solution of these differential equations
is much more important than the theoretical investigation. However, the
computational solutions are still difficult and require a lot of mathematical
tools including special sections from analysis and computational methods
i.e. solution of large linear systems of equations.

In this lecture notes, we try to give a compromise between the theoretical
mathematics concerning differential equations and computational tools. We
restrict ourselves to partial differential equations which describe steady-state
phenomena, more procisely, to elliptic problems.

First, we overview the most important vector calculus which is essen-
tial in describing partial differential equations. After that, several concrete
physical problems are shown that demonstrate how it is possible to derive
partial differential equations based on physical laws. It is also pointed out
how the boundary conditions come from the physics in a very natural way.
Then the most popular method – the Finite Element Method – is outlined
from theoretical and also from computational points of view. Finally, some
other traditional and modern computational methods are outlined (Fourier’s
method, finite difference method, meshless methods, method of fundamental
solutions).

The mathematical tools are rather difficult. We tried to show the math-
ematical background as detailed as possible, but we had to skip a lot of
proofs, and we tried to concentrate on the computational aspects of the
presented methods.

Should you observe some misprints, typos, or any other problems, please
do not hesitate to contact the author:

Dr. Csaba Gáspár, Professor

Department of Mathematics and Computational Sciences
Széchenyi István University
Egyetem tér 1, H-9026 Győr, Hungary

gasparcs@math.sze.hu
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2 Some vector calculus

Here we briefly summarize the main notations and concepts which are used
in the rest of the lecture notes.

• N: the set of natural numbers

• Z: the set of integer numbers

• R: the set of real numbers

• RN : the set of ordered realN -tuples (usually meant as column vectors)

• C: the set of complex numbers

2.1 Differentiation in vector fields

Let Ω ⊂ RN be a bounded domain in the N -dimensional space (usually
N = 1, N = 2 or N = 3) and let u : Ω→ R be a multivariate scalar-valued
function. Denote by E : Ω → RN a multivariate vector-valued function
(vector field),

E := (E1, E2, ..., EN )

where Ej are the components of E.
Introduce the vector field

gradu :=

(
∂u

∂x1
,
∂u

∂x2
, ...,

∂u

∂xN

)
,

and also the scalar function

divE :=
∂E1

∂x1
+
∂E2

∂x2
+ ...+

∂EN
∂xN

gradu is called the gradient of u. divE is the divergence of E.
The following statement can be verified by direct calculations:

Proposition: Let u, v be sufficiently smooth scalar functions, and let E be
a sufficiently smooth vector field. Then:

grad (u · v) = (gradu) · v + u · (grad v)

div (u · E) = 〈(gradu), E〉+ u · (divE)
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where the symbol 〈., .〉 means the scalar product (inner product) in RN : if
a = (a1, a2, ..., aN ), b = (b1, b2, ..., bN ) are N -dimensional vectors, then

〈a, b〉 :=
N∑
j=1

aj · bj

Let u be a differentiable scalar function and denote by n an arbitrary unit
vector. The expression

∂u

∂n
(x) := 〈gradu(x), n〉

is called the derivative of u taken in the direction of n. It is the limit of the
quotient

f(x+ ε · n)− f(x)

ε
when ε→ 0.

If u is a (twice differentiable) scalar function, then define the Laplacian of
u as follows:

∆u :=
N∑
j=1

∂2u

∂x2
j

The differential operator ∆ is called Laplace operator.
Clearly:

∆u = div gradu

(check it!)

Remark: It is often convenient to introduce the symbolic vector ∇, the
components of which are the partial differential operators with respect to
the spatial variables (nabla operator):

∇ :=

(
∂

∂x1
,
∂

∂x2
, ...,

∂

∂xN

)
The gradient and the divergence can then be expressed with the nabla op-
erator in the following form:

gradu = ∇u

divE = ∇ · E = 〈∇, E〉,
i. e. the divergence is the ’scalar product’ of ∇ and the correspending vector
field.
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2.2 Integrals

Denote by Γ the boundary of the domain Ω. This is a closed curve if Ω ⊂ R2,
and it is a closed surface if Ω ⊂ R3. Recall that if u is a scalar-valued
function defined on Ω, then the volume integral∫

Ω
u dΩ

is a real number. Its illustrative meaning is as follows. If Ω is subdivided
into disjoint subdomains Ω1, Ω2, ..., Ωn, then∫

Ω
u dΩ ≈

n∑
j=1

uj · |Ωj |

where |Ωj | denotes the area (resp. the volume) of the subdomain Ωj , while
uj means a value of u taken at an arbitrary point of Ωj . Similarly the line
integral (resp. surface integral) ∫

Γ
u dΓ

is another real number; if Γ is subdivided into disjoint subsets Γ1, Γ2, ...,
Γn, then ∫

Γ
u dΓ ≈

n∑
j=1

uj · |Γj |

where |Γj | denotes the length (resp. the area) of the subset Γj , and uj
is again a value of u taken at an arbitrary point of Γj . The approximate
equalities become exact when the maximal volume/length of the subdivision
tends to zero.

From physical point of view, the units of measurement of the above
integrals are:

(unit of measurement of

∫
Ω
u dΩ) = (unit of measurement of u)·meterN

and

(unit of measurement of

∫
Γ
u dΓ) = (unit of measurement of u)·meterN−1

One of the most profound theorems in vector calculus is the divergence
theorem:

Divergence theorem (Gauss): If E : Ω → RN is a sufficiently smooth
vector field and Ω is a sufficiently smooth domain, then:
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∫
Ω

divE dΩ =

∫
Γ
〈E,n〉 dΓ

where n denotes the outward normal unit vector along the boundary Γ (i.e.
n is orthogonal to Γ and its length equals to 1). Therefore 〈E,n〉 is the
length of the component of E taken in the outward normal direction.

The mathematical meaning of the divergence theorem is that the integral
of a derivative of a function (i.e. the divergence) equals to another integral
taken on the boundary (which has one less dimension than the original
domain). In this sense, the divergence theorem is a strong generalization of
the well-known Newton-Leibniz theorem.

The integral

∫
Γ
〈E,n〉 dΓ is often called the flux of E through the surface

Γ and has some direct physical meaning. For example, if E is a stationary

velocity field of a fluid e.g. water, then the physical dimension of

∫
Γ
〈E,n〉 dΓ

is m
sec ·m

2 = m3

sec i.e. water discharge. Since the water is incompressible, the
mass conservation law says that the total flux through an arbitrary closed
surface is always zero (provided that the domain contains no sources or
sinks). Therefore, by virtue of the divergence theorem, E is necessarily
divergence-free, i.e. divE ≡ 0. This is a physical interpretation of the
divergence theorem.

Now we give an illustration for the divergence theorem (which is, how-
ever, far from being a rigorous proof). In 2D, consider a vector field E =
(F,G), the values of which are known only in the centers of an orthogonal,
uniform cell system (see Figure 1). Assume that the cell size h is small. In
an elementary cell (denoted by C), let us approximate the left-hand side of
the divergence theorem. Denote by the neighbouring cells of C by N , W , S
and E. Since

(divE)C =

(
∂F

∂x

)
C

+

(
∂G

∂y

)
C

≈ FE − FW
2h

+
GN −GS

2h
,

the integral of the divergence of E on the cell C is approximately equal to:∫
Ω

divE dΩ ≈
(
FE − FW

2h
+
GN −GS

2h

)
· h2 =

h

2
· (FE − FW +GN −GS)

To compute the contour integral in the right-hand side of the divergence
theorem, first divide the boundary of the cell C into four parts denoted by
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Figure 1: Cell system. A central cell and its neighbours

ΓN , ΓW , ΓS and ΓE (northern, western, southern and eastern parts). Along
ΓE , he outward normal unit vector is n = (1, 0). Approximating the normal
component of (F,G) (i.e. the function F ) by the mean value F |ΓE

≈ FE+FC
2 ,

we have: ∫
ΓE

〈E,n〉 dΓ ≈
(

1

2
FE +

1

2
FC

)
· h

Similarly:∫
ΓN

〈E,n〉 dΓ ≈
(

1

2
GN +

1

2
GC

)
· h (here n = (0, 1))

∫
ΓW

〈E,n〉 dΓ ≈
(
−1

2
FW −

1

2
FC

)
· h (here n = (−1, 0))∫

ΓS

〈E,n〉 dΓ ≈
(
−1

2
GS −

1

2
GC

)
· h (here n = (0,−1))

Summing up the above four (approximate) equalities:∫
∂C
〈E,n〉 dΓ ≈

≈
(

1

2
FE +

1

2
FC +

1

2
GN +

1

2
GC −

1

2
FW −

1

2
FC −

1

2
GS −

1

2
GC

)
· h =

= (FE +GN − FW −GS) · h
2
≈
∫
C

divE dΩ.
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Thus, the theorem is illustrated (not proved!) for an infinitesimal cell C.
If Ω is the union of finite number of infinitesimal cells C1, C2, ..., Cm,

then: ∫
C

divE dΩ =

m∑
k=1

∫
Ck

divE dΩ ≈

≈
m∑
k=1

∫
∂Ck

〈E,n〉 dΓ ≈

Let Γ0 be a side of a cell lying in the interior of Ω. Then the integral∫
Γ0

〈E,n〉 dΓ occurs in the above sum exactly twice with opposite normal

vectors (see Figure 2). They cancel out, therefore the divergence theorem
remains valid also in this case.

Figure 2: Two contour integrals appearing in neighboring interior cells

The divergence theorem implies several direct corollaries. The most im-
portant ones are collected in the following propositions. Let u and v be
sufficiently smooth scalar functions (more precisely, they are supposed to be
twice continuously differentiable in the closure of Ω). Then:

Proposition: ∫
Ω

∆u dΩ =

∫
Γ

∂u

∂n
dΓ

Proof: Obviously ∫
Ω

∆u dΩ =

∫
Ω

div gradu dΩ

Applying the divergence theorem on the right-hand side:∫
Ω

∆u dΩ =

∫
Γ
〈gradu, n〉 dΓ =

∫
Γ

∂u

∂n
dΓ.

Green’s first theorem:∫
Ω

(∆u) · v dΩ = −
∫

Ω
〈gradu, grad v〉 dΩ +

∫
Γ

∂u

∂n
· v dΓ
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Proof: First, since div gradu = ∆u, we have:

div ((gradu) · v) = (∆u) · v + 〈gradu, grad v〉

Integrating the left-hand side over Ω and applying the divergence theorem:∫
Ω

div ((gradu) · v) dΩ =

∫
Γ
〈(gradu) · v, n〉 dΓ =

∫
Γ

∂u

∂n
· v dΓ

Integrating the right-hand side over Ω:∫
Ω

(∆u) · v dΩ +

∫
Ω
〈gradu, grad v〉 dΩ

from which the theorem follows.

Green’s second theorem:∫
Ω

(∆u) · v dΩ−
∫

Ω
u ·∆v dΩ =

∫
Γ

∂u

∂n
· v dΓ−

∫
Γ
u · ∂v

∂n
dΓ−

Proof: Green’s first theorem states that:∫
Ω

(∆u) · v dΩ = −
∫

Ω
〈gradu, grad v〉 dΩ +

∫
Γ

∂u

∂n
· v dΓ

Swapping the roles of u and v:∫
Ω

(∆v) · u dΩ = −
∫

Ω
〈grad v, gradu〉 dΩ +

∫
Γ

∂v

∂n
· u dΓ

Subtracting the last two equalities, we have the theorem.
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3 From physical laws to partial differential equa-
tions

Now we will see through some examples, how a physical law generated a par-
tial differential equation which describes the corresponding physical process.
The key issue is the divergence theorem.

3.1 Heat conduction

Consider a 3D material in which there are heat sources and result in a
nonuniform heat distribution. Suppose that the steady state has reached
i.e. the temperature does not vary in time. Denote by u(x) the temperature
of the material at the spatial point x (measure unit: K). Let σ be the
thermal conductivity of the material (physical dimension: power

length·temperature ,

measure unit: W
m·K ), which characterizes the ’efficiency’ of the heat transfer.

Let n be an arbitrary unit vector which defines a specified direction. The
physical dimension of σ · ∂u∂n is power

length·temperature ·
temperature

length = power
length2

.
According to Fourier’s law, the thermal flux is proportional to the deriva-

tive of the temperature taken in the direction n, and the coefficient of pro-
portionality is (the negative) thermal conductivity.

Thus, if Γ0 is a (closed or not closed) surface in the space, the integral∫
Γ0

σ
∂u

∂n
dΓ

is the thermal energy across the surface Γ0 per second, where n denotes the
normal unit vector along Γ0.

From the energy conservation law (the first law of thermodynamics), it
follows that ∫

Γ0

σ
∂u

∂n
dΓ = 0

holds for every closed surface which surrounds a volume Ω0. The divergence
theorem implies that ∫

Ω0

div (σ · gradu) dΩ = 0

for arbitrary subdomain Ω0 contained in the domain Ω, the domain of the
diffusion process. Consequently:

div (σ · gradu) = 0
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holds in Ω.
If the thermal conductivity σ is constant in the whole domain Ω, then

the above partial differential equation has a simpler form:

σ ·∆u = 0

or simply
∆u = 0

in Ω.

3.2 Diffusion

Consider a fluid substance in which a molecular diffusion of some pollutant
takes place. Suppose that the steady state has reached i.e. the physical
characteristics of the process do not vary in time, Denote by u(x) the con-
centration of the pollutant at the spatial point x (the physical dimension of
u is mass

length3
). Let σ be the diffusion coefficient (diffusivity, physical dimen-

sion: length2

time ), which characterizes the ’speed’ of diffusion (i.e. the mobility
of the particles of the pollutant).

Let n be an arbitrary unit vector which defines a specified direction. The

physical dimension of σ · ∂u∂n is length2

time ·
mass

length3

length =
mass
time

length2
.

According to Fick’s law, the diffusion flux is proportional to the deriva-
tive of the concentration taken in the direction n, and the coefficient of
proportionality is (the negative) diffusion coefficient.

Thus, if Γ0 is a (closed or not closed) surface in the space, the integral∫
Γ0

σ
∂u

∂n
dΓ

is the total mass of pollutant across the surface Γ0 per second, where n
denotes the normal unit vector along Γ0.

From the mass conservation law, it follows that∫
Γ0

σ
∂u

∂n
dΓ = 0

holds for every closed surface which surrounds a volume Ω0. The divergence
theorem implies that ∫

Ω0

div (σ · gradu) dΩ = 0
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for arbitrary subdomain Ω0 contained in the domain Ω, the domain of the
diffusion process. Consequently:

div (σ · gradu) = 0

holds in Ω.
If the diffusivity σ is constant in the whole domain Ω, then the above

partial differential equation has a simpler form:

σ ·∆u = 0

or simply
∆u = 0

in Ω.

3.3 Electric current in 3D materials

Consider an electrically conducting 3D material (electrolyte, biological tis-
sues, soil etc.) in which a steady-state electric current takes place. Denote
by u(x) the electric potential at the point x (measure unit: V ), and let σ be
the specific conductance (conductivity, measure unit: 1

ohm·m). This is the
reciprocal value of the specific resistance of the material.

The measure unit of σ ∂u∂n is 1
ohm·m ·

V
m = A

m2 in every direction specified

by the unit vector n. That is, σ ∂u∂n means current density in the direction n.
According to Ohm’s law, the current density is proportional to the

derivative of the electric potential (voltage) taken in the direction n, and
the coefficient of proportionality is the conductivity.

Thus, if Γ0 is a (closed or not closed) surface in the space, the integral∫
Γ0

σ
∂u

∂n
dΓ

is the total current through the surface Γ0, where n denotes the normal unit
vector along Γ0. From the charge conservation law, it follows that∫

Γ0

σ
∂u

∂n
dΓ = 0

holds for every closed surface which surrounds a volume Ω0. The divergence
theorem implies that ∫

Ω0

div (σ · gradu) dΩ = 0
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for arbitrary subdomain Ω0 contained in the domain Ω, the domain of the
electrical current. Consequently:

div (σ · gradu) = 0

holds in Ω.
If the conductivity σ is constant in the whole domain Ω, then the above

partial differential equation has a simpler form:

σ ·∆u = 0

or simply
∆u = 0

in Ω.

3.4 Seepage through porous medium

Consider a 3D porous material (soil, sand etc.) and the groundwater flow
through the medium. Assume that the flow is steady-state. Denote by u(x)
the hydraulic head in the point x. Then

u =
p

ρg
+ z,

where p is the pressure, ρ is the density of water, g is the acceleration due
to gravity, and z denotes the height above a reference level (i.e. the vertical
component of the point x). Its physical dimension is length.

According to Darcy’s law, the seepage velocity (apart from a dimension-
less constant) is proportional to the derivative of the hydraulic head taken
in the direction n, the direction of the velocity, and the (negative) coefficient
of proportionality is the so-called hydraulic conductivity (or permeability) of
the medium. This is denoted by K (physical dimension: length

time ).
Thus, if Γ0 is a (closed or not closed) surface in the space, the integral∫

Γ0

K · ∂u
∂n

dΓ

is the total discharge through the surface Γ0, where n denotes the normal
unit vector along Γ0. From the mass conservation law, it follows that∫

Γ0

K · ∂u
∂n

dΓ = 0
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holds for every closed surface which surrounds a volume Ω0. The divergence
theorem implies that ∫

Ω0

div (K · gradu) dΩ = 0

for arbitrary subdomain Ω0 contained in the seepage domain Ω. Conse-
quently:

div (K · gradu) = 0

holds in Ω.
If the hydraulic conductivity K is constant in the whole domain Ω, then

the above partial differential equation has a simpler form:

K ·∆u = 0

or simply
∆u = 0

in Ω.

In all of the above four examples, the physical process (which is assumed
to be steady-state) is described by a partial differential equation, which has
the form:

div (σ · gradu) = 0

where the a priori unknown function u is the physical quantity which char-
acterizes the process, σ is a known multivariate, positive function, which
characterizes some material property. In the presence of sources and sinks,
the above partial differential equation has the form:

div (σ · gradu) = f

where the known function f describes the density distribution of the sources.
The above equations are the simplest examples for second-order elliptic

partial differential equations. They describe steady-state processes, when
the physical quantities do not depend on time.

There are more general elliptic partial differential equations e.g. the
convection-diffusion equation. The much more complicated equations which
describe the fluid or gas motion are nonlinear. In this lecture notes, how-
ever, we restrict ourselves to the above simpler elliptic equations. Note that
the corresponding time-dependent processes are described by similar, but
more complicated partial differential equations (parabolic and hyperbolic
equations) which contain the derivatives with respect to time as well.
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An important special case when the material-characteristic function σ is
constant in the whole domain Ω. In this case, the equation is simplified to
the Poisson equation:

∆u = f

If the function f in the right-hand side is identically zero, we obtain the
Laplace equation:

∆u = 0

The solutions of the Laplace equations are called harmonic functions.
A frequently appearing situation is that σ is a piecewise constant function

(or, it is approximated by such a function). In this case, the differential
equation is not more complicated than the Laplace equation, but an extra
phenomenon appears at the inner surface that separates the subdomains
where σ takes different values. As a model problem, consider the domain
Ω, which consists of two subdomains, Ω1 and Ω2. Suppose that σ ≡ σ1 =
const. in Ω1 and σ ≡ σ2 = const. in Ω2. Denote by Γ0 the inner surface
Γ0 := ∂Ω1 ∩ ∂Ω2, then Γ0 separates Ω1 and Ω2. Consider a thin subdomain
Ω0 at the interface Γ0 (see Figure 3. Let n be a normal unit vector pointing
from Ω1 into Ω2. Let u be a solution of the partial differential equation

Figure 3: For the interface conditions.

div (σ · gradu) = 0

and denote by u1 := u|Ω1 and u2 := u|Ω2 , the restrictions of u to the
subdomains Ω1 and Ω2. Then, in the interior of Ω1 and Ω2, respectively,
the equations

∆u1 = 0, ∆u2 = 0

16



are valid, but this is not the case along the interface Γ0 (here u is not twice
continuously differentiable). However, u is continuous (this is obvious from
physical point of view), i.e.

u1 = u2 along Γ0

Integrating the function div (σ · gradu) over Ω0, the integral is zero; on the
other hand, from the divergence thorem, it follows that:

0 =

∫
Ω0

div (σ · gradu) dΩ =

∫
∂Ω0

σ · ∂u
∂n

dΓ ≈

≈
∫

Γ2

σ2 ·
∂u2

∂n
dΓ−

∫
Γ1

σ1 ·
∂u1

∂n
dΓ,

since n points from Ω1 into Ω2, thus, n is the outward (resp. inward) normal
unit vector along Γ2 (resp. Γ1). When ε → 0, the approximate equality
becomes an exact equality, and since Ω0 was arbitrary, we obtain:

σ1 ·
∂u1

∂n
= σ2 ·

∂u2

∂n
along Γ0

along Γ0. Note that this is also obvious from physical considerations: for
instance, if u is electric potential, the equality σ1 · ∂u1∂n |Γ0 = σ2 · ∂u2∂n |Γ0 means
the conservation of charge.

In short, the value of the solution remain continuous along the interface
Γ0, but the normal derivative has a jump here.

So far, some partial differential equations have been introduced. It should
be pointed out, that a physical process is not uniquely determined by the
governing partial differential equation. From physical point of view, this is
obvious: for instance, when an electric current is investigated which flows
through a 3D material, the potential distribution highly depends on the in-
coming and outgoing current distributions. To properly describe the physical
process, some extra information (auxiliary condition) is still needed.
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4 Boundary conditions

As mentioned before, a differential equation does not describe the corre-
sponding physical process uniquely. From pure mathematical point of view
it means that a partial differential equation has infinitely many solutions.
Indeed, considering the simplest 2D Laplace equation

∆u = 0,

the functions u := 1, u := x, u := y, u := x2 − y2, u = x · y,... and all linear
combinations of them satisfy the differential equation.

If one wants to find a specific solution (which describes the corresponding
physical process), some additional information is needed. In the case of ellip-
tic equations, this extra information is usually connected with the boundary
of the domain. These boundary conditions have physical meaning.

Now we outline the usual boundary conditions. Without going into de-
tails we note that the above introduced elliptic differential equations sup-
plied with one of the following boundary conditions have generally a unique
solution in a well-defined function space.

Consider the elliptic partial differential equation:

div (σ · gradu) = f in Ω

where Ω is a bounded domain. Denote by Γ the boundary of the domain Ω.

First (or Dirichlet) boundary condition:

u is prescribed along Γ

As an example, consider the heat conduction equation. Assume that a 3D
object contains heat sources. If the object is immersed in melting ice, then
a Dirichlet condition is enforced: the temperature on the boundary is 0
degrees Celsius (provided that the steady state has reached). In practice,
this is rarely the case. A more probable situation is that measurements have
been done along the boundary, so that we know the temperature distribution
on the boundary by measurements.

Second (or Neumann) boundary condition:

σ · ∂u
∂n

is prescribed along Γ
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where n denotes the outward normal unit vector along Γ. In practice, this is
equivalent to the prescription of the normal derivative ∂u

∂n along the boundary
Γ.

An important special case is when the normal derivative is identically zero
along the boundary. This is the case in heat conduction problems, if the
object is wrapped in a thermal insulator layer. In electrical current prob-
lems, this means that the material is electrically insulated from the outer
materials.

Third (or Robin) boundary condition:

A linear combination of u and
∂u

∂n
is prescribed along Γ

At a first glance, this seems to be a pure mathematical generalization of
the Dirichlet and Neumann boundary conditions. In fact, such a boundary
condition appears in a natural way when solving the equation

div (σ · gradu) = 0,

and the domain consists of two parts: an inner domain Ω and a thin layer
Ω0 which surrounds Ω.

Suppose that σ ≡ const. in Ω, and σ ≡ σ0 in Ω0, where 0 < σ0 � σ, and
the thickness of Ω0 is much less that the characteristic size of Ω (see Figure
4). This is the case, when u means an electric potential and the layer Ω0 is
filled by a ’quasi-insulator’ material i.e. its conductivity is much less that
in the interior of Ω. (One can think also of a not perfect thermal insulator
layer in heat conduction problems etc.)

Suppose that along Γ0, the external boundary of Ω0, the potential uext
is given as a Dirichlet boundary condition. Then, along the interface Γ, we
have (in accordance of the previous section):

σ · ∂u
∂n

= σ0 ·
∂u0

∂n

Since Ω0 is thin, the derivative ∂u0
∂n can be approximated by the difference

quotient
u0|Γ0 − u0|Γ

d
=
uext − u

d
. This implies that (approximately):

σ · ∂u
∂n

= σ0 ·
uext − u

d
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Figure 4: For the Robin boundary condition.

Rearranging this equality, we immediately obtain a Robin-type boundary
condition along Γ:

σ0

d
· u+ σ · ∂u

∂n
=
σ0

d
· uext

That is, the physical problem itself leads to the Robin boundary condition
in a natural way.

In practice, the most frequently appearing situation is that the boundary
is divided into several (disjoint) parts, and along the different parts, differ-
ent types of boundary condition are prescribed (mixed boundary condition).
Roughly speaking, this means that to each boundary point, exactly one
boundary condition has to be assigned. Note also that the boundary condi-
tion should not contain second of higher order derivatives of the unknown
function.

We demonstrate the very natural appearance of mixed boundary con-
ditions through an example of seepage hydraulics, which also contains a
non-familiar character. Consider a 2D seepage problem through a dam.
Figure 5 shows the cross-section of a dam which is made of porous mate-
rial. On the left-hand side of the dam, the water level is high (H1), while
on the right-hand side, it is low (H2). The pressure difference induces a
seepage motion through the dam, which is assumed to be homogeneous for
simplicity, i.e. the hydraulic conductivity is constant everywhere.

In the steady state, the seepage is bounded by the curve Γ from above.
This is the free surface of the seepage. The location of Γ is a priori not
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Figure 5: The classical dam problem (free boundary problem).

known, the determination of Γ is a part of the problem called free boundary
problem. In the domain Ω, the velocity potential u satisfies the Laplace
equation:

∆u = 0

Along the boundary, several types of boundary conditions are taken:

• At a point (x, y) ∈ Γ1, the pressure can be calculated: p = (H1−y) ·γ,
where γ is the specific weight of water. Substituting this into the
expression of the velocity potential u = p

γ + y, we obtain that

u ≡ H1 along Γ1

(Dirichlet boundary condition).

• Along Γ2, the velocity vector is tangential; consequently, its normal
component is identically zero:

∂u

∂n
≡ 0 along Γ2

(Neumann boundary condition).

• On Γ3, the situation is similar to the case of Γ1, i.e.:

u ≡ H2 along Γ3
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(Dirichlet boundary condition).

• At a point (x, y) ∈ Γ4, the pressure is atmospheric, therefore:

u(x, y) = y along Γ4

(Dirichlet boundary condition). Note that, in contrast to the parts Γ1

and Γ3, the boundary value is not constant; it depends on the location
of the point of boundary point. Γ4 is called seepage face.

• At the points (x, y) ∈ Γ, where Γ is the (a priori unknown) free surface,
two independent boundary conditions can be prescribed. The velocity
vector is tangential, therefore:

∂u

∂n
≡ 0 along Γ

(similarly to the case of Γ2). On the other hand, the pressure is atmo-
spheric, which implies:

u(x, y) = y along Γ

The presence of the free surface makes the whole problem nonlinear. How-
ever, it can be solved by a special iterative technique, by correcting the
position of the approximate free surface in each step. Note that, in every
iteration, a Laplace equation supplied with mixed boundary conditions has
to be solved. Details are omitted.
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5 The Finite Element Method

5.1 Theory in a nutshell

Here we briefly summarize the main theoretical aspects of the Finite Element
Method. Most of the propositions, theorems are mentioned here without
proofs.

First we recall the most important concepts.

5.1.1 A reminder

Normed spaces. A vector space X is called normed space, if a function
||.|| is defined in X (called norm), which has the following properties:

• For every vector x ∈ X: ||x|| ≥ 0 and ||x|| = 0 if and only if x = 0.

• For every vector x ∈ X and every scalar α ∈ R: ||α · x|| = |α| · ||x||.

• For arbitrary vectors x, y ∈ X: ||x + y|| ≤ ||x|| + ||y|| (’triangle in-
equality’).

The distance of the vectors x, y ∈ X is defined as the norm of their difference,
i.e. ||x− y||.

The vector sequence (xn) ⊂ X is said to be convergent and to tend to
the vector x ∈ X, if ||xn − x|| → 0, as n→∞.

The vector sequence (xn) ⊂ X is said to be a Cauchy sequence if for
every ε > 0, there exists an index N such that for all indices n,m ≥ N , the
inequality ||xn − xm|| < ε holds.

In arbitrary normed space, if a vector sequence is convergent, then it
is necessarily a Cauchy sequence. The converse statement is generally not
true.

The normed space X is called complete or Banach space, if every Cauchy
sequence is convergent in X. Every normed space can be made complete by
adding extra vectors to the space and by properly expanding the operations
as well as the norm to these extra vectors.

The most frequently appearing examples for normed spaces: R itself
with the absolute value as a norm; RN with the most popular norms:

• ||x||max := max
1≤k≤N

|xk| (maximum norm)

• ||x||1 :=
N∑
k=1

|xk| (sum norm)
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• ||x|| :=

√√√√ N∑
k=1

|xk|2 (Euclidean norm)

where x = (x1, x2, ..., xN ). These spaces are finite dimensional spaces; ev-
ery finite dimensional normed space is automatically complete, i.e. Banach
space. For infinite dimensional spaces, this is not the case. The most im-
portant infinite dimensional spaces are certain function spaces as follows:

• The space of the continuous functions defined on a finite interval [a, b]
denoted by C[a, b] with the maximum norm:

||f ||max := max
a≤x≤b

|f(x)|

• The space of the m times continuously differentiable functions defined
on a finite interval [a, b] denoted by Cm[a, b] with the maximum norm:

||f ||Cm[a,b] :=
m∑
k=0

max
a≤x≤b

|f (k)(x)|

• The space of the integrable functions defined on a finite or infinite
interval (a, b) denoted by L1(a, b) with the L1-norm:

||f ||L1(a,b) :=

∫ b

a
|f(x)| dx

• The space of the square integrable functions defined on a finite or
infinite interval (a, b) denoted by L2(a, b) with the L2-norm:

||f ||L2(a,b) :=

√∫ b

a
|f(x)|2 dx

The above spaces can be defined for multivariate functions in a straight-
forward way. The role of the interval (a, b) is played by an N -dimensional
domain Ω.

All the above function spaces are complete i.e. Banach spaces. Note
however, that the e.g. space C[a, b] is a normed space with the L1(a, b)-
norm, but it is not complete: the completion of the space is exactly equal
to the space L1(a, b).

Euclidean spaces. A vector space X is called Euclidean space, if a bivari-
ate, real-valued function 〈., .〉 is defined in X (called scalar product or inner
product), which has the following properties:
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• For every vector x ∈ X: 〈x, x〉 ≥ 0 and 〈x, x〉 = 0 if and only if x = 0

• For arbitrary vectors x, y ∈ X: 〈x, y〉 = 〈y, x〉

• For arbitrary vectors x, y ∈ X and every scalar α ∈ R: 〈αx, y〉 =
α · 〈x, y〉

• For arbitrary vectors x, y, z ∈ X: 〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉

Note that these properties imply that for arbitrary vectors x, y ∈ X and
every scalar α ∈ R: 〈x, αy〉 = α · 〈x, y〉, and for arbitrary vectors x, y, z ∈ X:
〈x, y + z〉 = 〈x, y〉+ 〈x, z〉.

A Euclidean space is always a normed space with the norm induced by
the inner product:

||x|| :=
√
〈x, x〉

In this statement, only the triangle inequality is not obvious. It is a conse-
quence of the following important inequality:

Theorem (Cauchy inequality): If X is a Euclidean space, then for arbitrary
vectors x, y ∈ X:

|〈x, y〉| ≤ ||x|| · ||y||,

and the equality is valid if and only if x and y are linearly dependent, i.e.
one of them is equal to the other multiplied by a scalar constant.

Proof: For arbitrary scalar α ∈ R, obviously ||x− αy||2 ≥ 0, i.e.:

||x− αy||2 = 〈x− αy, x− αy〉 =

= ||x||2 − 2α〈x, y〉+ α2||y||2 ≥ 0

Now define α by α := ||x||
||y|| (provided that y 6= 0; otherwise, the statement is

simplified to the trivial equality 0 = 0). We have:

||x||2 − 2
||x||
||y||
〈x, y〉+

||x||2

||y||2
· ||y||2 ≥ 0.

This can be simplified to the inequality

〈x, y〉 ≤ ||x|| · ||y||

This is valid for arbitrary vectors x, y ∈ X. If y is substituted by (−y), the
inequality remains valid:

〈x,−y〉 ≤ ||x|| · || − y|| = ||x|| · ||y||,
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whence 〈x, y〉 ≥ −||x|| · ||y||. We have obtained that

−||x|| · ||y|| ≤ 〈x, y〉 ≤ ||x|| · ||y||,

i.e. |〈x, y〉| ≤ ||x|| · ||y||. Equality is valid only if ||x−αy||2 = 0, i.e. x = αy.

From the Cauchy inequality, the triangle inequality simply follows:

||x+y||2 = ||x||2 +2〈x, y〉+ ||y||2 ≤ ||x||2 +2||x|| · ||y||+ ||y||2 = (||x||+ ||y||)2.

Taking the square root of both sides, we have the triangle inequality.

It is worth mentioning the following simple but useful equalities as well:

||x+ y||2 = ||x||2 + 2〈x, y〉+ ||y||2

||x− y||2 = ||x||2 − 2〈x, y〉+ ||y||2

for arbitrary x, y ∈ X.

A Euclidean space X is called Hilbert space if it is complete with respect to
the norm induced by the scalar product.

One of the most important Hilbert spaces is the previously mentioned
L2(a, b), the space of square integrable functions equipped with the scalar
product

〈f, g〉L2(a,b) :=

∫ b

a
f(x) · g(x) dx

and the corresponding multivariate space L2(Ω) with the scalar product

〈f, g〉L2(Ω) :=

∫
Ω
f(x) · g(x) dx

Orthogonality. In a Euclidean space X, the vectors x, y ∈ X are called
orthogonal, if their scalar product is zero: 〈x, y〉 = 0. In this case, the
theorem of Pythagoras is valid:

||x+ y||2 = ||x||2 + ||y||2,

which can be generalized as follows: if x1, x2, ..., xm ∈ X are pairwise or-
thogonal vectors, then:

||
m∑
j=1

xj ||2 =

m∑
j=1

||xj ||2.
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Bounded linear operators. Let X, Y be normed spaces and let A : X →
Y be a linear mapping (operator). The operator A is called bounded, if there
exists a constant K such that for every x ∈ X, the inequality

||Ax|| ≤ K · ||x||

is valid. K is called a bound of the operator A. The boundedness is equiva-
lent to the continuity of A: A is bounded if and only if it preserves the limit
i.e. for arbitrary convergent sequence xn → x, it follows that Axn → Ax.
The least bound of A is called the norm of the operator A (denoted by ||A||).
Therefore for arbitrary x ∈ X:

||Ax|| ≤ ||A|| · ||x||

is valid. The operator norm has the following extremal property:

||A|| = max
x∈X,||x||=1

||Ax||

If the linear operator A is real-valued i.e. Y = R, then A is called linear
functional.

The operator norm is really a norm, and makes the vector space of the
bounded linear X → Y operators a normed space. (This space is complete, if
Y is complete.) In particular, if A,B : X → Y are bounded linear operators,
then:

||A+B|| ≤ ||A||+ ||B||

Moreover, if Z is another normed space, A : X → Y , B : Y → Z are
bounded linear operators then so is their composition BA : X → Z, and:

||BA|| ≤ ||B|| · ||A||

As an important special case, an N ×M matrix can also be regarded as a
bounded, linear RM → RN mapping. Its operator norm depends on the
choice of the norms in the spaces RM and RN . The most frequently used
matrix norms (induced by vector norms) are as follows:

• Row norm: If both in RN and in RM , the maximum norm is defined,
then

||A|| = max
1≤k≤N

M∑
j=1

|Akj |
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• Column norm: If both in RN and in RM , the sum norm is defined,
then

||A|| = max
1≤j≤M

N∑
k=1

|Akj |

• Matrix norm induced by the Euclidean vector norm: If in RN , the Eu-
clidean norm is defined, then for arbitrary square matrix A ∈MN×N :

||A|| = max
1≤k≤N

√
λk,

where λ1,...,λN are the eigenvalues of the (self-adjoint, positive semidef-
inite) matrix A∗A.

As a consequence, if A is self-adjoint, the the matrix norm induced by the
Euclidean norm is as follows:

||A|| = max
1≤k≤N

|λk|,

where now λ1,...,λN are the eigenvalues of the matrix A. In addition to it,
if A is positive definite, then

||A|| = max
1≤k≤N

λk, and ||A−1|| = 1

min
1≤k≤N

λk
.

5.1.2 Abstract variational problems

Let H be a real Hilbert space and let a : H × H → R be a symmetric,
bounded and coercive bilinear functional, i.e.

• a is linear in its both variables

• a(u, v) = a(v, u) for all u, v ∈ H (symmetry)

• |a(u, v)| ≤M · ||u|| · ||v|| is valid for some M ≥ 0 (boundedness)

• |a(u, u)| ≥ m · ||u||2 is valid for some m > 0 (coercivity)

Note that in this case:

m · ||u||2 ≤ a(u, u) ≤M · ||u||2

is valid for all u ∈ H.
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Let ` : H → R be a given, bounded linear functional.

Variational problem: Find a vector u ∈ H such that for every v ∈ H, the
equality

a(u, v) = `v

is valid.
The fundamental theorem of the variational problems and methods is as

follows (without proof):

Theorem (Lax-Milgram): Under the above conditions taken on a and `,
the variational problem has a unique solution.

In fact, the functional a is an inner product in the space H, which induces
the norm

||u||a :=
√
a(u, u)

(energetic norm, or simply a-norm).

Remark: In practice, the bilinear functional a comes from the elliptic partial
differential equation to be solved.

Denote by u∗ the (unique) solution of the variational problem. Let Vh ⊂ H
be a finite dimensional subspace, the dimension N of which is character-
ized by the parameter h (in practice, this means a length). The functions
belonging to Vh are often referred to as trial functions.

In order to approximate the exact solution u∗, restrict the variational
problem to the subspace Vh.

Variational problem in the subspace Vh: Find a vector uh ∈ Vh such
that the variational equalities

a(uh, vh) = `vh

are satisfied for every vector vh ∈ Vh.

By virtue of the Lax-Milgram theorem, this variational problem also has a
unique solution uh ∈ Vh. The vector uh is interpreted as an approximate
solution of the original variational problem. Two tasks arise immediately:
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1. How to compute uh ?

2. How to estimate the error u∗ − uh ?

As far as the first task is concerned, denote by N the dimension of the
subspace Vh. Define a basis ϕ1, ϕ2, ..., ϕN in Vh, and seek the solution uh
as a linear combination of the basis vectors:

uh =
N∑
k=1

αjϕj

It is sufficient to enforce the variational equalities to the vectors vh = ϕk
(k = 1, 2, ..., N). Thus, we obtain the discrete variational problem:

N∑
j=1

αj · a(ϕj , ϕk) = `ϕk (k = 1, 2, ..., N)

In a more compact form: Aα = b. The matrix A is called stiffness matrix
with the entries: Akj := a(ϕj , ϕk). The components of the right-hand side
are: bk := `ϕk.

Due to the symmetry of the bilinear functional a, the stiffness matrix A
is self-adjoint. Moreover:

Proposition: The matrix A is positive definite.
Proof: It is sufficient to investigate the quadratic form of A. Let x =
(x1, x2, ..., xN ) ∈ RN be an arbitrary nonzero vector, then:

〈Ax, x〉 =
N∑
k=1

N∑
j=1

Akjxkxj =
N∑
k=1

N∑
j=1

a(ϕj , ϕk)xkxj =

= a

 N∑
k=1

xkϕk,
N∑
j=1

xjϕj

 = a(wh, wh),

where wh :=

N∑
j=1

xjϕj . Due to the linear independence of the vectors ϕj , the

vector wh differs from zero. The proposition is now a consequence of the
coercivity of a.

An important property of the discrete solution is a special orthogonality
property:
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Proposition: The error of the approximation i.e. the vector (u∗ − uh) is
a-orthogonal to the subspace Vh, i.e.

a(u∗ − uh, vh) = 0 for all vh ∈ Vh

Proof: Consider the original variational problem. In particular, for all vh ∈
Vh ⊂ H:

a(u∗, vh) = `vh

For the discrete variational problem, by definition:

a(uh, vh) = `vh

Subtracting the two equalities, we have the proposition.

Based on the orthogonality property, we obtain a special error estimation:

Proposition: For arbitrary vector vh ∈ Vh

||u∗ − uh||a ≤ ||u∗ − vh||a

Proof: Let vh ∈ Vh be arbitrary. Then:

||u∗ − vh||2a = ||(u∗ − uh) + (uh − vh)||2a =

= ||u∗ − uh||2a + 2 · a(u∗ − uh, uh − vh) + ||uh − vh||2a
Due to the othogonality property, a(u∗ − uh, uh − vh) = 0. On the other
hand, obviously ||uh − vh||2a ≥ 0. Thus, we obtain that:

||u∗ − vh||2a ≥ ||u∗ − uh||2a,

which implies the proposition.

The above proposition can be interpreted as an error estimation. The left-
hand side is the error of the approximate solution measured in a-norm, while
then right-hand side is an approximation error which shows, how precisely
the vector u∗ can be approximated by the elements of the subspace Vh. The
proposition says that the vector uh results in the minimal distance (measured
in a-norm):

||u∗ − uh||a = min
vh∈Vh

||u∗ − vh||a
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The above estimation can be performed with respect to the original norm
of the Hilbert space H:

Theorem (Céa’s lemma): For arbitrary vector vh ∈ Vh

||u∗ − uh|| ≤
M

m
· ||u∗ − vh||

Proof: Let vh ∈ Vh be arbitrary. Utilizing the inequalities m · ||u||2 ≤
a(u, u) ≤M · ||u||2:

m · ||u∗ − uh||2 ≤ a(u∗ − uh, u∗ − uh) = a(u∗ − uh, u∗ − vh + vh − uh) =

= a(u∗ − uh, u∗ − vh) + a(u∗ − uh, vh − uh)

Due to the orthogonality property, the last term in the right-hand side van-
ishes, therefore:

m · ||u∗ − uh||2 ≤ a(u∗ − uh, u∗ − vh) ≤M · ||u∗ − uh|| · ||u∗ − vh||,

which implies the theorem.

The estimation of the right-hand side can be performed by more standard
tools without knowing the discrete variational solution uh.

Remarks:

1. Using the previous proposition

||u∗ − uh||a ≤ ||u∗ − vh||a,

and the inequalities m · ||u||2 ≤ a(u, u) ≤ M · ||u||2, we immediately
obtain a sharper estimation for Céa’s lemma:

m · ||u∗ − uh||2 ≤ ||u∗ − uh||2a ≤ ||u∗ − vh||2a ≤M · ||u∗ − vh||2,

whence:

||u∗ − uh|| ≤
√
M

m
· ||u∗ − vh||

for all vh ∈ Vh.
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2. The above technique (when we use the same subspace Vh in the varia-
tional equalities) is known also as Galerkin method. However, it is also
possible to define another finite-dimensional subspace Wh (the space
of test functions) with the basis ψ1, ψ2, ..., ψM (the dimensions N
and M may differ). This technique is called Petrov-Galerkin method.
In this case, the variational equalities are enforced to the vectors ψk
(k = 1, 2, ...,M). Thus, we obtain another discrete variational prob-
lem:

N∑
j=1

αj · a(ϕj , ψk) = `ψk (k = 1, 2, ...,M)

However, the matrix of tis system does not remain self-adjoint in gen-
eral, and the solvability is not guaranteed in advance.
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5.2 Finite Element Method for 1D Poisson problems

Let (a, b) ⊂ R be a finite interval. Let f : (a, b) → R be a given (square
integrable) function, and consider the simplest 1D Poisson equation:

−u′′ = f in (a, b)

supplied with homogeneous Dirichlet boundary condition:

u(a) = u(b) = 0.

First, a proper Hilbert space H should be defined.
Introduce the function space:

H := H1
0 (a, b) := {w ∈ L2(a, b) : w′ ∈ L2(a, b), w(a) = w(b) = 0}

with the inner product:

〈u, v〉H :=

∫ b

a
u′(x) · v′(x) dx

For the sake of simplicity, the inner product and the norm in the space
L2(a, b) will be denoted as follows:

〈u, v〉0 :=

∫ b

a
u(x) · v(x) dx, ||u||0 :=

√∫ b

a
|u(x)|2 dx

It can be easily checked that all the properties of the H-inner product
are fulfilled, thus, H is a Euclidean space. The completeness is not trivial.
It is stated here without proof:

Theorem: The space H is a Hilbert space.

The norm in the space H is characterized by the following important prop-
erty:

Theorem (Poincaré’s inequality): There exists a positive constant c > 0
such that for every u ∈ H1

0 (a, b):∫ b

a
|u′(x)|2 dx ≥ c ·

∫ b

a
|u(x)|2 dx

that is:
||u||2H ≥ c · ||u||20
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Proof: Since u(a) = 0, for arbitrary x ∈ (a, b), obviously:

u(x) =

∫ x

a
u′(t) dt

Applying the Cauchy inequality in the function space L2(a, b):

|u(x)|2 =

∣∣∣∣∫ x

a
1 · u′(t) dt

∣∣∣∣2 ≤ (∫ x

a
12 dt

)
·
(∫ x

a
|u′(t)|2 dt

)
≤

≤ x ·
∫ b

a
|u′(t)|2 dt

Integrating both sides with respect to x, we have:∫ b

a
|u′(x)|2 dx ≤

(∫ b

a
x dx

)
·
(∫ b

a
|u′(t)|2 dt

)
=
b2 − a2

2
·
∫ b

a
|u′(t)|2 dt,

which completes the proof.

Remark: Observe that it is not exploited in the proof that u vanishes at both
endpoints of the interval. The proof is essentially unchanged if the condition
u(a) = 0 or the condition u(b) = 0 is assumed only.

Now the bilinear functional a and the linear functional ` should be defined.
Multiplying the original differential equation by an arbitrary function v ∈
H1

0 (a, b) and integrating over the interval:

−
∫ b

a
u′′(x) · v(x) dx =

∫ b

a
f(x) · v(x) dx

Integrating by parts on the left-hand side, we obtain:∫ b

a
u′(x) · v′(x) dx =

∫ b

a
f(x) · v(x) dx

This is called the weak form of the original Poisson problem. Now let us
define the desired functionals as follows:

a(u, v) := 〈u, v〉H =

∫ b

a
u′(x) · v′(x) dx

`v := 〈f, v〉L2(a,b) =

∫ b

a
f(x) · v(x) dx

Now it should be checked whether these functionals have the desired prop-
erties. Indeed:
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• a is linear in its both variables

• a(u, v) = a(v, u) for all u, v ∈ H i.e a is symmetric;

• |a(u, v)| = |〈u, v〉H | ≤ ||u||H · ||v||H , i.e. a is bounded (here the Cauchy
inequality has been applied);

• |a(u, u)| = ||u||2H , i.e. a is coercive;

• |`v| = |〈f, v〉0| ≤ ||f ||0 · ||v||0 ≤
1

c
· ||f ||0 · ||v||H , i.e. ` is bounded (here

the Cauchy and the Poincaré inequalities have been applied).

Thanks to the abstract results, we already know that the variational problem
does have a unique solution in the Hilbert space H. It should be pointed
out that in the variational problem, no second-order derivatives occur. This
simplifies also the determination of the approximate solution.

5.2.1 Finite element subspaces

The next task is to properly define the finite dimensional subspace Vh. As
a simple example, let Vh be the subspace of the piecewise linear functions
that satisfy the homogeneous Dirichlet boundary condition. For this reason,
define a subdivision of the interval (a, b) by the not necessarily equidistant
point set a = x0 < x1 < ... < xN = b. Denote by hk := xk+1 − xk
(k = 0, 1, ...N − 1).

Now consider the piecewise linear functions defined at the gridpoints as
follows:

ϕk(xk) := 1, and ϕk(xj) := 0 if j 6= k

(k = 1, 2, ..., N − 1). Then

Vh = span{ϕ1, ϕ2, ..., ϕN−1}

It is clear that Vh is an (N − 1)-dimensional subspace, and the functions
ϕ1, ϕ2, ..., ϕN−1 form a basis in Vh. The functions ϕk are often called hat
functions because of the shape of their graph (see Figure 6) The abstract
results assure that the discrete variational problem also has a unique solution
in the subspace Vh, and it is expressed in the form:

uh =

N−1∑
j=1

αjϕj ,
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Figure 6: Some hat functions.

where the coefficients α1, ..., αN−1 satisfy the discrete system

Aα = b,

where

Ak,j = a(ϕj , ϕk), bk =

∫ b

a
f(x) · ϕk(x) dx

Due to the definition of the basis functions ϕk, the stiffness matrix A is
tridiagonal. Since the derivative of a hat function is a piecewise constant
function, namely:

ϕ′k(x) =


1

hk−1
(x ∈ (xk−1, xk))

− 1
hk

(x ∈ (xk, xk+1))

therefore the calculation of the entries of the stiffness matrix is extremely
simple:

Ak,k =

∫ xk+1

xk−1

(ϕ′k(x))2 dx =
1

hk−1
+

1

hk

Ak,k−1 =

∫ xk+1

xk−1

ϕ′k−1(x) · ϕ′k(x) dx = − 1

hk−1
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Ak,k+1 =

∫ xk+1

xk−1

ϕ′k+1(x) · ϕ′k(x) dx = − 1

hk

All the remaining entries of A equal to zero.
The components of the right-hand side should be approximated in gen-

eral (if the integral cannot be calculated exactly). For instance, if the inte-
gral is approximated by the trapezoidal rule, we obtain:

bk =

∫ b

a
f(x) · ϕk(x) dx =

∫ xk+1

xk−1

f(x) · ϕk(x) dx ≈

≈ 0 + f(xk)

2
· (xk − xk−1) +

f(xk) + 0

2
· (xk+1 − xk) =

=
hk−1 + hk

2
· f(xk)

5.2.2 Error estimations

According to Céa’s lemma, it is sufficient to examine how exactly the func-
tions belonging to H can be approximated by piecewise linear functions.

For the sake of simplicity, assume that the set of points x0, x1, ..., xN is

equidistant: xk = a+k ·h, where h =
b− a
N

is the stepsize; N is a predefined

number, which characterizes the ’resolution’ of the subspace Vh.
For the time being, let F ∈ C2[a, b] be an arbitrary smooth function.

Denote by S the first-degree spline (i.e. piecewise linear function), which
takes the value Fk := F (xk) at the point xk for k = 0, 1, ..., N . On the
interval [xk, xk+1], by definition:

S(x) = Fk +
Fk+1 − Fk

h
· (x− xk)

Applying Lagrange’s mean value theorem, we obtain that:

S(x) = Fk + F ′(ξ) · (x− xk)

for some ξ ∈ (xk, xk+1). That is:

S′(x) ≡ F ′(ξ) = const.

on the subinterval [xk, xk+1]. On the other hand, expand the function F ′ in
finite Taylor series around xk:

F ′(x) = F ′(xk) + F ′′(τ) · (x− xk)
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for some τ ∈ (xk, xk+1).
Applying Lagrange’s mean value theorem once more (to the function

F ′), we have:

|F ′(x)− S′(x)|2 = |F ′(xk)− F ′(ξ) + F ′′(τ) · (x− xk)|2 =

= |F ′′(θ) · (xk − ξ) + F ′′(τ) · (x− xk)|2 ≤

≤ ||F ′′||2max · (h+ |x− xk|)2 ≤ ||F ′′||2max · 4h2

This estimation is valid on each subinterval. Integrating over the interval
(a, b) with respect to x, we obtain:∫ b

a
|F ′(x)− S′(x)|2 dx ≤ 4 · (b− a) · ||F ′′||2max · h2

that is:

||F − S||H = ||F − S||H1
0 (a,b) ≤ 2 · ||F ′′||max ·

√
b− a · h = O(h)

This result means that the approximation of the exact solution u∗ of the
original problem by the elements of the subspace Vh is also at least O(h).
Thus, Céa’s lemma gives us the following error estimation:

||u∗ − uh||H1
0 (a,b) ≤ 2 · ||(u∗)′′||max ·

√
b− a · h = O(h)

provided that the exact solution u∗ is smooth enough (which is the case,
when the function f is sufficiently smooth).

That is, the error of the discrete solution is O(h) with respect to the
H1

0 (a, b)-norm.

Remark:

• If we want to analyse the error with respect to the weaker L2(a, b)-
norm, a sharper estimation can be obtained (also known as ’Nitsche’s
trick’).

First, summarize the estimations which are known from the previous
considerations. There exists a constant C ≥ 0 independent of h such
that:

1. ||u∗||H ≤ C · ||f ||0
2. ||u∗ − uh||H ≤ C · h · ||(u∗)′′||0
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Recall also the orthogonality property:

〈u∗ − uh, vh〉H = 0 for all vh ∈ Vh

Now consider the auxiliary problem:

−w′′ = u∗ − uh, w(a) = 0, w(b) = 0

Denote by w∗ the exact solution, and let wh ∈ Vh be the solution of
the corresponding discrete variational problem.

Applying the variational equality a(w∗, v) =
∫ b
a (u∗ − uh) · v dx to the

function v := u∗ − uh, we have:

a(w∗, u∗ − uh) = ||u∗ − uh||20

On the other hand, using the orthogonality property:

a(wh, u
∗ − uh) = a(u∗ − uh, wh) = 0

Subtracting this equality from the previous one:

a(w∗ − wh, u∗ − uh) = ||u∗ − uh||20,

that is:

||u∗ − uh||20 = a(w∗ − wh, u∗ − uh) = 〈w∗ − wh, u∗ − uh〉H ≤

≤ ||w∗ − wh||H · ||u∗ − uh||H ,

where we applied the Cauchy inequality. Now let us apply the estima-
tion 2. to both factors of the right-hand side. We have:

||u∗ − uh||20 ≤ const.h2 · ||(w∗)′′||0 · ||(u∗)′′||0

But ||(w∗)′′||0 = ||u∗ − uh||0, which implies that:

||u∗ − uh||0 ≤ const.h2 · ||(u∗)′′||0 = O(h2)

That is, the error of the discrete solution is O(h2) with respect to the
L2(a, b)-norm.
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5.2.3 Finite elements for more general 1D problems

Let (a, b) ⊂ R be a finite interval. Let f : (a, b) → R be a given (square
integrable) function, and consider the following 1D elliptic equation:

−(k · u′)′ + d · u = f in (a, b)

supplied with homogeneous Dirichlet boundary condition:

u(a) = u(b) = 0.

Here k is a given, positive, bounded function, d is a nonnegative function.
Assume that

0 < k0 ≤ k(x) ≤ k1, 0 ≤ d(x) ≤ d1

Now the problem should be reformulated in a variational form. Again,
introduce the Hilbert space:

H := H1
0 (a, b) := {w ∈ L2(a, b) : w′ ∈ L2(a, b), w(a) = w(b) = 0}

with the inner product:

〈u, v〉H :=

∫ b

a
u′(x) · v′(x) dx

Now the bilinear functional a and the linear functional ` should be defined.
Multiplying the original differential equation by an arbitrary function v ∈
H1

0 (a, b) and integrating over the interval:

−
∫ b

a
((k(x) · u′(x))′ + d · u(x) · v(x)) dx =

∫ b

a
f(x) · v(x) dx

Integrating by parts on the left-hand side, we obtain:∫ b

a
(k(x) · u′(x) · v′(x) + d(x) · u(x) · v(x)) dx =

∫ b

a
f(x) · v(x) dx

This is called the weak form of the original elliptic problem. Now let us
define the desired functionals as follows:

a(u, v) :=

∫ b

a
(k(x) · u′(x) · v′(x) + d(x) · u(x) · v(x)) dx

`v := 〈f, v〉L2(a,b) =

∫ b

a
f(x) · v(x) dx

It should be checked whether these functionals have the desired properties.
Straightforward calculations show that:
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• a is linear in its both variables

• a(u, v) = a(v, u) for all u, v ∈ H i.e a is symmetric

• |a(u, v)| ≤ const. · ||u||H · ||v||H , i.e. a is bounded (here the Cauchy
inequality has been applied)

• |a(u, u)| ≥ k0 · ||u||2H , i.e. a is coercive

• |`v| = |〈f, v〉0| ≤ ||f ||0 · ||v||0 ≤
1

c
· ||f ||0 · ||v||H , i.e. ` is bounded (here

the Cauchy and the Poincaré inequalities have been applied).

Define the subspace Vh in such a way than earlier: let Vh be the sub-
space of the piecewise linear functions that satisfy the homogeneous Dirichlet
boundary condition. Define a subdivision of the interval (a, b) by the not
necessarily equidistant point set a = x0 < x1 < ... < xN = b. Introduce the
basis functions again:

ϕk(xk) := 1, and ϕk(xj) := 0 if j 6= k

(k = 1, 2, ..., N − 1).
The abstract results still assure that the discrete variational problem also

has a unique solution in the subspace Vh, and it is expressed in the form:

uh =
N−1∑
j=1

αjϕj ,

where the coefficients α1, ..., αN−1 satisfy the discrete system

Aα = b,

where

Ak,j = a(ϕj , ϕk) =

∫ b

a
(k(x)ϕ′j(x)ϕ′k(x) + dϕj(x)ϕk(x)) dx

and

bk =

∫ b

a
f(x) · ϕk(x) dx

It is typical that the function k is piecewise constant. The entries of the
stiffness matrix and the components of the right-hand side can now be cal-
culated in a straightforward, but possibly a more difficult way than earlier.
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5.2.4 1D problems, inhomogeneous Dirichlet boundary condition

Let (a, b) ⊂ R be a finite interval. Let f : (a, b) → R be a given (square
integrable) function, and consider the following 1D elliptic equation:

−(k · u′)′ + d · u = f in (a, b)

supplied with inhomogeneous Dirichlet boundary condition:

u(a) = A, u(b) = B.

Again, here k is a given, positive, bounded function, d is a nonnegative
function. Assume again that

0 < k0 ≤ k(x) ≤ k1, 0 ≤ d(x) ≤ d1

In principle, the exact solution can be expressed as follows. Let g be
a sufficiently regular function that satisfies the inhomogeneous boundary
conditions:

g(a) = A, g(b) = B,

and seek the solution in the form u := w + g, where w satisfies a modified
partial differential equation:

−(k · u′)′ + d · u = f + (k · g′)′ + d · g in (a, b)

supplied with homogeneous boundary conditions:

w(a) = 0, w(b) = 0.

From here, the previous techniques can be applied.
In practice, the algorithm is much simpler. Introduce the ’one-sided’

piecewise linear hat functions ϕ0 and ϕN by defining ϕ0(x0) = 1 and
ϕN (xN ) = 1 (see Figure 7). Now seek the discrete solution uh in the follow-
ing form:

uh :=

N−1∑
j=1

αjϕj +A · ϕ0 +B · ϕN ,

and the discrete variational equations are as follows:

N−1∑
j=1

αja(ϕj , ϕk) +A · a(ϕ0, ϕk) +B · a(ϕN , ϕk) = `ϕk

for k = 1, 2, ..., N − 1.
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Figure 7: One-sided hat functions.

5.2.5 1D problems, mixed boundary condition

Let (a, b) ⊂ R be a finite interval. Let f : (a, b) → R be a given (square
integrable) function, and consider the following 1D elliptic equation:

−(k · u′)′ + d · u = f in (a, b)

supplied with mixed boundary condition:

u(a) = 0, k · u′(b) = C

i.e. at the right-hand endpoint of the interval, a Neumann boundary condi-
tion is prescribed.

As earlier, k is a given, positive, bounded function, d is a nonnegative
function. Assume again that

0 < k0 ≤ k(x) ≤ k1, 0 ≤ d(x) ≤ d1

In contrast to the pure Dirichlet boundary condition, where the type of
boundary condition affects the proper definition of the Hilbert space H, the
Neumann type boundary condition affects the proper definition of the linear
functional `.

Introduce the Hilbert space:

H := {w ∈ L2(a, b) : w′ ∈ L2(a, b), w(a) = 0}
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with the inner product:

〈u, v〉H :=

∫ b

a
u′(x) · v′(x) dx

That is, the Dirichlet condition appears in the definition of H. It is not
trivial that H is a Hilbert space again (this statement is not proved here),
moreover, as observed earlier, the Poincaré inequality remains valid in this
space; there exists a positive constant c such that the inequality∫ b

a
|u′(x)|2 dx ≥ c ·

∫ b

a
|u(x)|2 dx

is valid for arbitrary u ∈ H.

In order that the bilinear functional a and the linear functional ` is defined
properly, let us multiply the original differential equation by an arbitrary
function v ∈ H and integrate over the interval:

−
∫ b

a
((k(x) · u′(x))′ + d · u(x) · v(x)) dx =

∫ b

a
f(x) · v(x) dx

Integrating by parts on the left-hand side, we obtain:[
−ku′v

]b
a

+

∫ b

a
(k(x) · u′(x) · v′(x) + d(x) · u(x) · v(x)) dx =

∫ b

a
f(x) · v(x) dx

that is, since v(a) = 0 but v(b) 6= 0 in general:∫ b

a
(k(x)·u′(x)·v′(x)+d(x)·u(x)·v(x)) dx =

∫ b

a
f(x)·v(x) dx+(ku′)(b)·v(b)

But the Neumann boundary condition assures that (k · u′(b)) = C. Thus,
we have obtained the weak form of the original problem:∫ b

a
(k(x) · u′(x) · v′(x) + d(x) · u(x) · v(x)) dx =

∫ b

a
f(x) · v(x) dx+ C · v(b)

Now let us define the desired functionals as follows:

a(u, v) :=

∫ b

a
(k(x) · u′(x) · v′(x) + d(x) · u(x) · v(x)) dx

`v := 〈f, v〉L2(a,b) + C · v(b) =

∫ b

a
f(x) · v(x) dx+ C · v(b)

It should be checked whether these functionals have the desired properties.
However, one should be careful since the definition of H and ` have been
changed. We summarize the necessary statements:
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• a is linear in its both variables

• a(u, v) = a(v, u) for all u, v ∈ H i.e a is symmetric

• |a(u, v)| ≤ const. · ||u||H · ||v||H , i.e. a is bounded (here the Cauchy
inequality has been applied)

• |a(u, u)| ≥ k0 · ||u||2H , i.e. a is coercive

• |`v| = |〈f, v〉0| ≤ ||f ||0 · ||v||0 ≤
1

c
· ||f ||0 · ||v||H , i.e. ` is bounded (here

the Cauchy and the Poincaré inequalities have been applied).

Remark: At the last item, we utilized the fact that the functional v → v(b)
is bounded with respect to the norm of H. Indeed:

v(b) =

∫ b

a
1 · v′(x) dx ≤

√
(b− a) ·

∫ b

a
|v′(x)|2 dx =

√
b− a · ||v||H .

Now let Vh be the subspace of the piecewise linear functions that satisfy the
homogeneous Dirichlet boundary condition at the point x = a only. Define
a subdivision of the interval (a, b) by the not necessarily equidistant point
set a = x0 < x1 < ... < xN = b. Introduce the basis functions again:

ϕk(xk) := 1, and ϕk(xj) := 0 if j 6= k

(k = 1, 2, ..., N). Observe that the ’one-sided’ function ϕN is chosen to the
basis in Vh; thus, the dimension of Vh is N (in contrast to the case of the
pure Dirichlet boundary condition).

The discrete variational problem still has a unique solution in the sub-
space Vh, and it is expressed in the form:

uh =

N∑
j=1

αjϕj ,

where the coefficients α1, ..., αN satisfy the discrete system

Aα = b,

where

Ak,j = a(ϕj , ϕk) =

∫ b

a
(k(x)ϕ′j(x)ϕ′k(x) + dϕj(x)ϕk(x)) dx
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and

bk =

∫ b

a
f(x) · ϕk(x) dx+ C · ϕk(b)

(k, j = 1, 2, ..., N).

Remark: The case when the Dirichlet boundary condition is inhomogeneous
can be treated in a similar way as earlier. If, for instance

u(a) = A

is prescribed, then the discrete variational solution uh is expressed in the
following form:

uh =
N∑
j=1

αjϕj +A · ϕ0,

which causes a change in the right-hand side of the discrete equations.

Summarizing the main tricks of the construction of a finite element tech-
nique, the essential steps are as follows:

• Define the partial differential equation together with the boundary
conditions in a traditional form.

• Define a proper Hilbert space H, the element of which satisfy the
corresponding homogeneous Dirichlet boundary condition.

• Multiply both sides of the partial differential equation by an arbitrary
test function v and apply an integral transform theorem (integration by
parts). Then define the bilinear functional a and the linear functional
` properly. Note that the Neumann type boundary condition (if exists)
appears always in the definition of `, while the Dirichlet type boundary
condition affects the choice of the space H.

• Check the necessary properties of the above defined functionals (coer-
civity, boundedness).

• Define a finite dimensional space Vh of the trial functions.

• Assemble and solve the discrete system of variational equations.

• If possible, try to estimate the accuracy of the method.
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5.3 Finite Element Method for 2D Poisson problems

Let Ω ⊂ R2 be a bounded domain, denote by Γ the boundary of the domain.
Let f : Ω→ R be a given (square integrable) function, and consider the 2D
Poisson equation:

−∆u = f in Ω

supplied with homogeneous Dirichlet boundary condition:

u|Γ = 0.

Introduce the function space:

H := H1
0 (Ω) :=

{
w ∈ L2(Ω) :

∂w

∂x
,
∂w

∂y
∈ L2(Ω), w|Γ = 0

}
with the inner product:

〈u, v〉H :=

∫
Ω
〈gradu, grad v〉 dxdy

For brevity, the inner product and the norm in the space L2(Ω) will be
denoted by:

〈u, v〉0 :=

∫
Ω
u(x, y) · v(x, y) dxdy, ||u||0 :=

√∫
Ω
|u(x, y)|2 dxdy

The properties of the H-inner product are fulfilled, i.e. H is a Euclidean
space. Moreover (without proof):

Theorem: The Euclidean space H is complete, i.e. it is a Hilbert space.

The Poincaré inequality is still valid. The essential ideas of the proof are
unchanged:

Theorem (Poincaré’s inequality): There exists a positive constant c > 0
such that for every u ∈ H1

0 (Ω):∫
Ω
||gradu||2 dxdy ≥ c ·

∫
Ω
|u(x, y)|2 dxdy

that is:
||u||2H ≥ c · ||u||20
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Proof: Since u|Γ = 0, the function u can be extended to a larger rectangle
(0, a) × (0, b) by zero outside of Ω. Let y ∈ (0, b) be an arbitrary, fixed
number. Since u(0, y) = 0, we have:

u(x, y) =

∫ x

0

∂u

∂x
(t, y) dt

Hence:

|u(x, y)|2 =

(∫ x

0
1 · ∂u

∂x
(t, y) dt

)2

≤
(∫ x

0
12 dt

)
·

(∫ a

0

(
∂u

∂x
(t, y)

)2

dt

)
=

= x ·
∫ a

0

(
∂u

∂x
(t, y)

)2

dt

Integrating both sides over the interval (0, a) with respect to x:∫ a

0
|u(x, y)|2 dx ≤ a2

2
·
∫ a

0

(
∂u

∂x
(x, y)

)2

dx

Integrating both sides over the interval (0, b) with respect to y:∫ b

0

∫ a

0
|u(x, y)|2 dxdy =

∫
Ω
|u(x, y)|2 dxdy ≤

≤ a2

2
·
∫ b

0

∫ a

0

(
∂u

∂x
(x, y)

)2

dxdy =

=
a2

2
·
∫

Ω

(
∂u

∂x
(x, y)

)2

dxdy

Similarly:∫ b

0

∫ a

0
|u(x, y)|2 dxdy =

∫
Ω
|u(x, y)|2 dxdy ≤ b2

2
·
∫

Ω

(
∂u

∂y
(x, y)

)2

dxdy

Adding the two inequalities:∫
Ω
|u(x, y)|2 dxdy ≤ a2 + b2

4
·
∫

Ω

((
∂u

∂y
(x, y)

)2

+

(
∂u

∂y
(x, y)

)2
)
dxdy

which implies the theorem.

Remark: Without going into details we note that the theorem remains valid,
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if, in the definition of H, the property u|Γ0 = 0 is required (instead of
u|Γ = 0), where Γ0 is a nonempty part of the boundary. That is, it is
sufficient to require that the function u vanishes along a part of the boundary
only.

Now the bilinear functional a and the linear functional ` will be defined.
Multiplying the original differential equation by an arbitrary function v ∈
H1

0 (Ω) and integrating over the interval:

−
∫

Ω
∆u(x, y) · v(x, y) dxdy =

∫
Ω
f(x, y) · v(x, y) dxdy

Using Green’s first formula on the left-hand side, we obtain:∫
Ω
〈grad (x, y), grad v(x, y)〉 dxdy =

∫
Ω
f(x, y) · v(x, y) dxdy

This is called the weak form of the original Poisson problem. Now let us
define the desired functionals as follows:

a(u, v) := 〈u, v〉H =

∫
Ω
〈gradu(x, y), grad v(x, y)〉 dxdy

`v := 〈f, v〉0 =

∫
Ω
f(x, y) · v(x, y) dxdy

Now it should be checked whether these functionals have the desired prop-
erties. Indeed:

• a is linear in its both variables

• a(u, v) = a(v, u) for all u, v ∈ H i.e a is symmetric

• |a(u, v)| = |〈u, v〉H | ≤ ||u||H · ||v||H , i.e. a is bounded (here the Cauchy
inequality has been applied)

• |a(u, u)| = ||u||2H , i.e. a is coercive

• |`v| = |〈f, v〉0| ≤ ||f ||0 · ||v||0 ≤
1

c
· ||f ||0 · ||v||H , i.e. ` is bounded (here

the Cauchy and the Poincaré inequalities have been applied).

Thanks to the abstract results, we already know that the variational problem
does have a unique solution in the Hilbert space H. It should be pointed
out that in the variational problem, only first-order derivatives occur. This
simplifies also the determination of the approximate solution.
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5.3.1 Finite element subspaces

The proper definition of the finite dimensional subspace Vh is a much more
complicated task than in 1D problems, where an interval has to be subdi-
vided only. In 2D problems, the domain Ω may have a complicated shape
and the structure of the subspace Vh should fit the domain in a certain sense.

Perhaps the most straightforward way is to cover the domain Ω by a set
of triangles (’mesh’ in the following). The following restrictions are required:

• the interiors of the triangles have to be disjoint

• the union of the triangles should be identical to the domain as precisely
as possible

• the triangles should fit the boundary of the domain as exactly as pos-
sible

• the triangles should join each others by whole sides

• the angles of the triangles should not be ’too small’.

The triangles of the systems are called finite elements. The corner points
of the triangles are called node points or simply nodes. As an illustration,
see Figure 8. In 2D (and especially in 3D), the definition of the basis func-

Figure 8: Triangular covering of a 2D domain.

tion (trial functions) is much more sophisticated task than in 1D. One of
the simplest examples for trial functions is the system of piecewise linear
(bivariate) functions. A typical basis in the subspace of these functions is
the system of ’tent functions’. Such a function takes the value 1 in a specific
node and zeros in all other nodes. This is a straightforward generalization of
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Figure 9: The graph of a typical tent function.

the one-dimensional ’hat functions’ (see Figure 9 for illustration). Since the
gradient of a bivariate piecewise linear function is piecewise constant vector
functions, the assembly of the stiffness matrix and the right-hand vector is
simple (in principle). However, in practice, one should create

• a list of nodes

• a list of elements (referred to by the indices of the nodes)

• a list of the elements that contain the node as a corner.

The stiffness matrix is sparse, because only the trial functions which belong
to neighbouring nodes generate nonzero entries. Thus, to numerically solve
the discrete variational equations, an iterative (preferably based on Krylov
subspaces) method can be recommended.

As far as the Neumann type boundary conditions are concerned, we point
out again that the proper definition of the Hilbert space H is affected by
the Dirichlet boundary condition. The Neumann type boundary condition
affects the concrete form of the linear functional `.

As an illustrative example, consider a square domain covered by an
equidistant grid with stepsize h in both principal directions. Let us di-
vide each cell into two congruent triangles by drawing a diagonal between
the lower left and the upper right corners. The support of the basis function
ϕC corresponding to the central point C is shown in Figure 10. The gradient
vector of ϕC is constant on each triangle belonging to the support of ϕC .
Namely:

• gradϕC = 1
h · (0,−1) on the triangle 1
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Figure 10: The support of the basis function ϕC .

• gradϕC = 1
h · (−1, 0) on the triangle 2

• gradϕC = 1
h · (−1, 1) on the triangle 3

• gradϕC = 1
h · (0, 1) on the triangle 4

• gradϕC = 1
h · (1, 0) on the triangle 5

• gradϕC = 1
h · (1,−1) on the triangle 6

The area of each triangle is h2

2 . Therefore the diagonal element of the
stiffness matrix belonging to ϕC is:∫

Ω
||gradϕC ||2 dxdy =

1

2
+

1

2
+ 1 +

1

2
+

1

2
+ 1 = 4.

As far as the off-diagonal entries located in the same row are concerned,
only the basis function result in nonzero contributions that belong to a
node which is neighbouring with C. The case of the node N is shown in
Figure 11 As can be easily checked, the corresponding matrix entry is:∫

Ω
〈gradϕC , gradϕN 〉 dxdy = −1,

and the same results are valid for the other principal directions W , S and
E: ∫

Ω
〈gradϕC , gradϕW 〉 dxdy = −1,∫

Ω
〈gradϕC , gradϕS〉 dxdy = −1,
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Figure 11: The supports of the basis function ϕC and ϕN .

∫
Ω
〈gradϕC , gradϕE〉 dxdy = −1.

There are two additional neighbouring basis functions in the direction NE
and SW ; the first one is shown in Figure 12. Here the contributions of the

Figure 12: The supports of the basis function ϕC and ϕNE .

two triangles cancel out (check it!):∫
Ω
〈gradϕC , gradϕNE〉 dxdy =

∫
Ω
〈gradϕC , gradϕSW 〉 dxdy = 0.

Thus, the discrete variational equation belonging to the node C is as follows:

4αC − αN − αW − αS − αE = bC ,
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where

bC :=

∫
Ω
f(x, y) · ϕC(x, y) dxdy

It can be seen that the assembly of the discrete variational equations is
rather complicated especially when the structure of the mesh is more com-
plex. From a practical point of view, it is more comfortable to treat the
trial functions elementwise, i.e. to compute the terms that the individual
elements contribute to the entries of the stiffness matrix with (and to the
components of the right-hand side, respectively).

The trial functions restricted to an element are called shape functions.
To generate a discrete variational system of equations, it is sufficient to know
the shape functions only (instead of the trial functions).

5.3.2 Some 2D finite elements

The description of the shape function is often simpler it the barycentric
coordinates are used instead of the familiar x, y coordinates. First we briefly
recall the definition:

Barycentric coordinates: Let the not collinear points (x1, y1), (x2, y2), (x3, y3) ∈
R2 be given. Denote by (x, y) an arbitrary points of the plane. Then
the points (x, y) can be uniquely expressed as a convex combination of
(x1, y1), (x2, y2), (x3, y3), i.e. there exist some coefficients λ1, λ2, λ3 ∈ R
such that:

x1λ1 + x2λ2 + x3λ3 = x

y1λ1 + y2λ2 + y3λ3 = y

λ1 + λ2 + λ3 = 1

The numbers λ1, λ2, λ3 are called the barycentric coordinates of the point
(x, y). It is obvious that as functions of x and y, they are polynomials of
first degree. It is also obvious that

λk(xk, yk) = 1, λk(xj , yj) = 0, if j 6= k

(k, j = 1, 2, 3).

Courant element (or T3 element): Consider the triangular element with the
vertices (nodes) (x1, y1), (x2, y2), (x3, y3) (see Figure 13) supplied with the
barycentric coordinate functions as shape functions:

λ1, λ2, λ3
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Then Vh is the elementwise linear functions (the ’tent’ functions mentioned
above).

Figure 13: Courant (T3) element

Second degree triangular element (or T6 element): Consider the triangular
element with the vertices (nodes) (x1, y1), (x2, y2), (x3, y3) (see Figure 14).
Denote by (x4, y4), (x5, y5), (x6, y6) the midpoints of the sides of the triangle.

Figure 14: Second-order (T6) triangular element

Define the following shape functions:

w1 := λ1 · (2 · λ1 − 1), w2 := λ2 · (2 · λ2 − 1), w3 := λ3 · (2 · λ3 − 1)

w4 := 4 · λ1 · λ2, w5 := 4 · λ2 · λ3, w6 := 4 · λ3 · λ1

Then
wk(xk, yk) = 1, wk(xj , yj) if j 6= k
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(k, j = 1, 2, ..., 6). Moreover the subspace Vh is the elementwise quadratic
functions which are continuously connected along the sides of the triangles.

The above elements can be generalized for 3D problems (tetrahedral
meshes) in a natural way. Note, however, that a really good mesh generation,
which can fit complicated domains (especially in 3D) is still a difficult task
in practice and requires special tools and algorithms.

57



6 Other computational techniques - an outlook

6.1 Method of Fourier

The method is introduced through the example of the 2D Poisson equation.
Throughout this subsection, we will use the more familiar notations x, y for
the spatial variable (instead of the vector notations).

6.1.1 Fourier’s method for 2D Poisson equation

Consider the Poisson equation

∆u = f in Ω

supplied with the homogeneous Dirichlet boundary condition:

u|Γ = 0,

where the domain Ω is a rectangle: Ω = (0, A)× (0, B).
The main idea of the method is to seek the solution in terms of sinusoidal

Fourier series:

u(x, y) =

∞∑
k=1

∞∑
j=1

ak,j · sin
kπx

A
sin

jπy

B
,

where the Fourier coefficients ak,j are unknown.
First, expand the function f in a sinusoidal Fourier series:

f(x, y) =
∞∑
k=1

∞∑
j=1

ck,j · sin
kπx

A
sin

jπy

B
,

where the Fourier coefficients can be computed by evaluating the following
integral:

ck,j =
4

AB

∫
Ω
f(x, y) · sin kπx

A
sin

jπy

B
dxdy

Proof reminder (with simplifications): Multiplying both sides of the equality

f(x, y) =

∞∑
k=1

∞∑
j=1

ck,j · sin
kπx

A
sin

jπy

B
,
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by sin
pπx

A
sin

qπy

B
, and integrating over Ω, we have:∫

Ω
f(x, y) · sin pπx

A
sin

qπy

B
dxdy =

=
∞∑

k,j=1

ck,j ·
(∫ A

0
sin

kπx

A
sin

pπx

A
dx

)
·
(∫ B

0
sin

jπy

B
sin

qπy

B
dy

)
Direct computations show that if k 6= p, then:∫ A

0
sin

kπx

A
sin

pπx

A
dx = 0,

and similarly, if j 6= q, then:∫ A

0
sin

jπx

B
sin

qπx

B
dx = 0.

Thus, the above equality is simplified to:∫
Ω
f(x, y) · sin pπx

A
sin

qπy

B
dxdy =

= cp,q ·
(∫ A

0
sin2 pπx

A
dx

)
·
(∫ B

0
sin2 qπy

B
dy

)
The integrals in the right-hand side can be calculated easily by substitution
t := πx

A yielding:∫ A

0
sin2 pπx

A
dx =

A

π
·
∫ π

0
sin2 kt dt =

A

π
·
∫ π

0

1− cos 2kt

2
dt =

A

2

Similarly: ∫ B

0
sin2 qπx

B
dy =

B

2
.

This implies that:

,

∫
Ω
f(x, y) · sin pπx

A
sin

qπy

B
dxdy = cp,q ·

AB

4
,

from which the proposition follows.

Now define the function u in the form:

u(x, y) =
∞∑
k=1

∞∑
j=1

ak,j · sin
kπx

A
sin

jπy

B
,
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with the Fourier coefficient:

ak,j := −
ck,j

k2π2

A2 + j2π2

B

(k, j = 1, 2, ...)

Then the function u vanishes along the boundary i.e. along the lines y = 0,
x = A, y = B, x = 0 (check it!). Moreover, the function u satisfies the
Poisson equation, since:

∆u(x, y) =
∞∑

k,j=1

ak,j ·
((

∂2

∂x2
sin

kπx

A

)
sin

jπy

B
+ sin

kπx

A

(
∂2

∂y2
sin

jπy

B

))
=

=

∞∑
k,j=1

ck,j
k2π2

A2 + j2π2

B2

·
(
k2π2

A2
+
j2π2

B2

)
· sin kπx

A
sin

jπy

B
=

=
∞∑

k,j=1

ck,j · sin
kπx

A
sin

jπy

B
= f(x, y)

Summarizing the above calculations, the algorithm is as follows:

• Calculate the Fourier coefficients:

ck,j :=
4

AB

∫
Ω
f(x, y) · sin kπx

A
sin

jπy

B
dxdy (k, j = 1, 2, ...)

• Calculate the Fourier coefficients:

ak,j := −
ck,j

k2π2

A2 + j2π2

B

(k, j = 1, 2, ...)

• Evaluate the Fourier series

u(x, y) :=
∞∑
k=1

∞∑
j=1

ak,j · sin
kπx

A
sin

jπy

B

The method can be applied very rarely, since it requires that:

• the domain Ω is a rectangle

• the problem to be solved is a Poisson equation.
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Generalizations are hard. However, if the method is applicable, then it is
economic from computation point of view, provided the Fourier series are
truncated by taking into account the first N terms and by performing both
the expansions and the evaluations by the Fast Fourier Transform algorithm.
In this case, the necessary number of arithmetic operations is O(N2 logN).

The generalization of the algorithm is not trivial even to the case of the
Laplace equation. In the following, this technique will be outlined.

6.1.2 Fourier’s method for 2D Laplace equation

Consider the Laplace equation

∆u = 0 in Ω

supplied with the nonhomogeneous Dirichlet boundary condition:

u|Γ = u0,

where the domain Ω is again a rectangle: Ω = (0, A)× (0, B).
Without loss of generality, we can assume that the boundary condition

function u0 vanishes at the corner points of the rectangle. Otherwise, seek
the solution u in the form: u(x, y) = w(x, y) + w0(x, y), where w0(x, y) =
a + bx + cy + dxy and the numbers a, b, c, d are the solutions of the simple
system of equations:

a = u0(0, 0)
a+ b ·A = u0(A, 0)
a+ b ·A+ c ·B = u0(A,B)
a+ c ·B = u0(0, B)

Then, by definition, the values of u0 and w0 coincide at the corner points.
The function w0 is obviously harmonic, thus, the function w satisfies the
Dirichlet problem:

∆w = 0 in Ω, w|Γ = u0 − w0|Γ,

where the boundary condition function vanishes at the corner points.

From now on, assume that the boundary condition function u0 itself has the
above property i.e. it vanishes at the corner points of the domain Ω. Denote
by Γ1, Γ2, Γ3 and Γ4 the sides of the rectangle Ω:

Γ1 := {(x, 0) : 0 ≤ x ≤ A}
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Γ2 := {(A, y) : 0 ≤ y ≤ B}

Γ3 := {(x,B) : 0 ≤ x ≤ A}

Γ4 := {(0, B) : 0 ≤ y ≤ B}

Expand the function u0 in sinusoidal Fourier series along the four sides of
the rectangle:

• Along Γ1:

u0(x, 0) =
∞∑
k=1

a
(1)
k · sin

kπx

A

• Along Γ2:

u0(A, y) =
∞∑
k=1

a
(2)
k · sin

jπy

B

• Along Γ3:

u0(x,B) =

∞∑
k=1

a
(3)
k · sin

kπx

A

• Along Γ4:

u0(0, y) =

∞∑
k=1

a
(4)
k · sin

kπy

B

Since the function u0 is assumed to be known, the Fourier coefficients a(1),
a(2), a(3), a(4) can be computed without difficulty.

Now define the following four bivariate functions:

u(1)(x, y) :=
∞∑
k=1

a
(1)
k ·

1

sinh kπB
A

· sin kπx
A
· sinh

kπ(B − y)

A

u(2)(x, y) :=
∞∑
k=1

a
(2)
k ·

1

sinh kπA
B

· sinh
kπx

B
· sin kπy

B

u(3)(x, y) :=

∞∑
k=1

a
(3)
k ·

1

sinh kπB
A

· sin kπx
A
· sinh

kπy

A

u(4)(x, y) :=

∞∑
k=1

a
(4)
k ·

1

sinh kπA
B

· sinh
kπ(A− x)

B
· sin kπy

B
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Elementary calculations show that ∆u(j) = 0 for j = 1, 2, 3, 4. Indeed,
for any k:

∆

(
sin

kπx

A
sinh

kπy

A

)
=

= −k
2π2

A2
· sin kπx

A
sinh

kπy

A
+
k2π2

A2
· sin kπx

A
sinh

kπy

A
≡ 0

(the other three functions appearing in the above Fourier series can be
treated similarly). Note that, if the function u0 is smooth enough, the
Laplace operator can be applied to the Fourier series term-by-term.

It can be checked by direct computations that for each j = 1, 2, 3, 4:

u(j)|Γj = u0|Γj ,

i.e. along the side Γj , u
(j) is identical to the boundary function u0, and

vanishes on the remaining three sides:

u(j)|Γk
≡ 0

for k 6= j.
Thus, the function defined by

u := u(1) + u(2) + u(3) + u(4)

is harmonic in Ω, and coincides with the boundary condition on Γ.
In short, the algorithm is as follows:

• Calculate the Fourier coefficients of u0 on each side of the rectangle

Ω. Thus, we obtain the numbers a
(1)
k , a

(2)
k , a

(3)
k , a

(4)
k (k = 1, 2, ...).

• Define the functions u(1), u(2), u(3), u(4) by the above sinusoidal Fourier
series.

• The solution of the Dirichlet problem is expressed as u := u(1) +u(2) +
u(3) + u(4).

The applicability of the method is restricted to the 2D Laplace equations
(or, at most, to a bit more general elliptic equations) defined on a rectangle.
In practice, the Fourier series expansions and evaluations are recommended
to be performed by the Fast Fourier Transform algorithm. In this case,
the necessary number of arithmetic operations is O(N logN) for computing

the Fourier coefficients a
(j)
k (k = 1, 2, ..., N , j = 1, 2, 3, 4). However, the
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computational cost of the evaluation of the solution is also O(N logN) in
each point (x, y). If the evaluation points are located on a grid with stepsize
h := const.

N , the total number of necessary operations is O(N3 logN). How-
ever, if the solution has to be evaluated in the vicinity of the boundary only
(which is often the case), then the computational complexity is reduced,
typically to O(N2 logN).

Remark:

• In the seemingly more general case, when an inhomogeneous Poisson
equation is to be solved:

∆u = f in Ω, u|Γ = u0,

the solution can be expressed as a sum of the solutions of the following
two problems:

∆v = f in Ω, v|Γ = 0,

∆w = 0 in Ω, w|Γ = u0.

It is obvious that the function u := v + w satisfies both the Poisson
equation and also the boundary condition.

6.2 The Finite Difference Method

The most traditional computational tool for solving partial differential equa-
tions is the finite difference method. The basic idea of the method is to
approximate the derivatives appearing in the differential equation by differ-
ence schemes. Therefore the first task is to define a computational grid i.e. a
finite set of points. All the values of functions are evaluated and computed
at the gridpoints only. To compute the (approximate) solution between the
gridpoints is a completely different task (interpolation problem in general),
which does not belong to the finite difference method.

6.2.1 Finite difference method for 1D elliptic problems

Let Ω be an 1D domain i.e. an interval: Ω := (0, A). Consider the 1D
Poisson equation:

u′′ = f in Ω

supplied with Dirichlet-type boundary condition:

u(0) = a, u(A) = b
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where a, b are predefined numbers, f is a given function which is defined on
the interval Ω.

Define a computational grid on the closed interval [0, A] by

xk := k · h (k = 0, 1, ..., N)

where h denotes the stepsize of the grid: h := A
N . The given number N indi-

cates how many parts the original interval is subdivided into. The numbers
x0, x1, ... , xN are called gridpoints. The above defined grid is equidistant
i.e. the distances between the consecutive gridpoints is constant. A part of
the grid is shown in Figure 15.

Figure 15: A part of a 1D equidistant grid.

A natural tool to create difference schemes is the well-known Taylor
series expansion. Recall that if u is a sufficiently smooth function (more
precisely, four times continuously differentiable), then it can be expanded in
terms of finite Taylor series around xk as:

u(xk+1) = u(xk +h) = u(xk) +
u′(xk)

1!
·h+

u′′(xk)

2!
·h2 +

u′′′(xk)

3!
·h3 +O(h4)

where in the right-hand side, only the order of magnitude of the remainder
term is indicated (O(h4)) Similarly:

u(xk−1) = u(xk−h) = u(xk)−
u′(xk)

1!
·h+

u′′(xk)

2!
·h2− u

′′′(xk)

3!
·h3 +O(h4)

Straightforward calculations show that

u′(xk) =
u(xk+1)− u(xk)

h
+O(h) (forward scheme)

u′(xk) =
u(xk)− u(xk−1)

h
+O(h) (backward scheme)

u′(xk) =
u(xk+1)− u(xk−1)

2h
+O(h2) (central scheme)
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u′′(xk) =
u(xk+1)− 2u(xk) + u(xk−1)

h2
+O(h2) (central scheme)

The terms O(h) and O(h2) characterize the errors of the schemes. We say
that a scheme is of order p, if the error term of the scheme (the difference
between the exact derivative and the difference scheme) is O(hp). We see
that the forward and the backward schemes are of first order, while the last
two central schemes are of second order.

In practice, the stepsize is predefined. A smaller stepsize results in more
precise schemes especially when the scheme is of high order. On the other
hand, a smaller stepsize increases the number of gridpoints, thus, the amount
of computational work is also increased. It should be pointed out, that
the exactness of the applied schemes does not mean the exactness of the
approximate solution of the differential equation; the error analysis is a
much more complicated task and requires special mathematical tools.

Returning to the model Poisson problem:

u′′ = f u(0) = a, u(A) = b,

denote by u0, u1, ..., uN the values of the approximate solution. At the
gridpoint xk the second order derivative u′′(xk) is approximated by the above
three-point central scheme. This results in the discrete problem:

uk−1 − 2uk + uk+1

h2
= fk := f(xk) (k = 1, 2, ..., N − 1)

The values u0 and uN are known form the boundary condition: u0 = a,
uN = b. We have obtained a linear system of algebraic equations with
(N − 1) unknowns.

To analyse the exactness, introduce the following error terms. Denote
by u the exact solution and:

gk :=
u(xk−1)− 2u(xk) + u(xk+1)

h2
− fk (k = 1, 2, ..., N − 1).

The numbers gk are called local error terms. Introduce also the global er-
ror terms as the differences of the exact and approximate solution at the
gridpoints:

ek := u(xk)− uk (k = 0, 2, ..., N).

Of course, e0 = eN = 0.
The local error can be estimated easily, based on the Taylor expansion

of u. However, the error which has a direct importance in practice is the
global error. In the following, an error estimation will be deduced.
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Observe that for the local error terms, the following equalities are valid:

u(xk−1)− 2u(xk) + u(xk+1)

h2
= fk + gk (k = 1, 2, ..., N − 1).

Consider the discrete system of equations again:

uk−1 − 2uk + uk+1

h2
= fk (k = 1, 2, ..., N − 1)

Subtracting the two equations, we obtain that the global error terms satisfy
a similar system of equations, and the local error terms appear on the right-
hand side:

ek−1 − 2ek + ek+1

h2
= gk (k = 1, 2, ..., N − 1)

and e0 = eN = 0.
Denote by Ah ∈M(N−1)×(N−1) the matrix of the system. Obviously, for

every w ∈ RN−1, the equality

(Ahw)k =
wk−1 − 2wk + wk+1

h2
(k = 1, 2, ..., N − 1)

is valid (where, by definition, w0 := wN := 0.
Thus, the connection between the local and global error terms can be

written in the following compact form:

Ahe = g

where e := (e1, ..., eN−1), and g := (g1, ..., gN−1). From this system, an error
estimation immediately follows:

||e|| ≤ ||A−1
h || · ||g||,

where ||.|| denotes the Euclidean norm in RN−1.
This estimation is not suitable for practical purposes yet, since the Eu-

clidean norm directly depend on h (through N). A much better choice for
measuring the errors is the use of the root mean square:

||e||RMS :=

√
e2

1 + e2
2 + ...+ e2

N−1

N − 1

Note that the root mean square of a vector which consists of ones is al-
ways equal to 1, independently of the dimension of the vector. The above
estimation immediately implies that:

||e||RMS ≤ ||A−1
h || · ||g||RMS
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We will show that the norm of the inverse matrix A−1
h is uniformly bounded

i.e. it is independent of h. More precisely:

||A−1
h || ≤ C

for some constant C, which is independent of h. This is often called the
stability of the scheme, and results in the estimation

||e||RMS ≤ C · ||g||RMS ,

which means that the global error can be estimated by the local error from
above. The local error terms can be estimated easily (using Taylor series
expansions), thus, this will result in the desired global error estimation.

The stability result is based on the following theorem:

Theorem: The matrix Ah is self-adjoint and negative definite. The eigen-
values of Ah are λ1, λ2, ..., λN−1, and the corresponding eigenvectors are
s(1), s(2), ..., s(N−1), where:

λk = − 4

h2
· sin2 kπ

2N
, s

(k)
j = sin

kjπ

N
(k = 1, 2, ..., N − 1)

Proof: Based on the definition of Ah, it is obvious that Ah is self-adjoint.
The only thing that should be proved is that Ahs

(k) = λk ·s(k). By definition:(
Ahs

(k)
)
j

=
1

h2
·
(

sin
k(j − 1)π

N
− 2 sin

kjπ

N
+ sin

k(j + 1)π

N

)
=

=
1

h2
·
(

sin
kjπ

N
cos

kπ

N
− cos

kjπ

N
sin

kπ

N
− 2 sin

kjπ

N
+

sin
kjπ

N
cos

kπ

N
+ cos

kjπ

N
sin

kπ

N

)
=

= − 2

h2
· sin kjπ

N
·
(

1− cos
kπ

N

)
Utilizing the elementary trigonometric identity sin2 α =

1− cos 2α

2
, we ob-

tain: (
Ahs

(k)
)
j

= − 4

h2
· sin kjπ

N
· sin2 kπ

2N
,

which completes the proof.
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Due to the self-adjoint property of the matrix Ah, the norm of Ah as well
as the norm of A−1 can be expressed with the eigenvalues of Ah:

Corollary:

||Ah|| = |λ|max = |λN−1| =
4

h2
· sin2 (N − 1)π

2N
≤ 4

h2

and

||A−1
h || =

1

|λ|min
=

1

|λ1|
=

h2

4 sin2 π
2N

∼ h2

4 π2

4N2

=
A2

π2

independently of h (where ∼ means the asymptotic equality when N →∞
i.e. h→ 0).

Thus, the stability of the scheme is proved, and the estimation

||e||RMS ≤ C · ||g||RMS ,

is valid.
The estimation of the right-hand side is much simpler. Expanding the

exact solution u in finite Taylor series around xk, we have:

u(xk+1) = u(xk +h) = u(xk) +
u′(xk)

1!
·h+

u′′(xk)

2!
·h2 +

u′′′(xk)

3!
·h3 +O(h4)

and

u(xk−1) = u(xk−h) = u(xk)−
u′(xk)

1!
·h+

u′′(xk)

2!
·h2− u

′′′(xk)

3!
·h3 +O(h4)

By adding these equalities, we obtain:

u(xk−1) + u(xk+1) = 2u(xk) + u′′(xk) · h2 +O(h4),

whence

gk =
u(xk−1)− 2u(xk) + u(xk+1)

h2
− fk =

=
u(xk−1)− 2u(xk) + u(xk+1)

h2
− u′′(xk) = O(h2)

i.e.
|gk| ≤ C0 · h2
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(k = 1, 2, ..., N − 1) for some constant C0 which is independent of h and k.
Therefore:

||g||RMS ≤ C0 · h2

which implies that the same type of estimation is valid for the global error:

||e||RMS ≤ C · C0 · h2

Summarizing the above results we have the following theorem:

Theorem: The accuracy of the above defined finite difference method based
on the central scheme is of second order, i.e. the global error (with respect to
the root mean square) is O(h2) (provided that the exact solution is smooth
enough).

Remarks:

1. The above 3-point central scheme can be generalized to the more gen-
eral problem

d

dx

(
σ · du

dx

)
= f,

which is the 1D equivalent of the differential equation div (σ ·gradu) =
f . The most usual scheme is:

1

h2
·
(
σk−1 + σk

2
uk−1 −

σk−1 + 2σk + σk+1

2
uk +

σk + σk+1

2
uk+1

)
2. If, for instance, at the point x0, a Neumann type boundary condition
u′(x0) = a is given, then the first derivative of u should be approxi-
mated at x0. The naive solution is to use the one-sided scheme:

u′(x0) ≈ u1 − u0

h
= a

However, this scheme is of first order only, which decreases the accu-
racy on the whole interval (0, A). A possible remedy is the use of a
higher order scheme for the derivative u′(x0). A more elegant way is as
follows. Let us expand the function u′ in a finite Taylor series around
x0 + h

2 :

u′(x0) = u′
(
x0 +

h

2
·
)
− 1

2
u′′
(
x0 +

h

2

)
+O(h2) =
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=
u1 − u0

h
− 1

2
· f
(
x0 +

h

2

)
+O(h2)

And since f
(
x0 + h

2

)
= f(x0) +O(h), therefore we have:

u′(x0) =
u1 − u0

h
− h

2
· f(x0) +O(h2)

Thus, the Neumann boundary condition at x0 can be approximated
by the second-order scheme:

u1 − u0

h
= a+

h

2
· f(x0)

6.2.2 Finite difference method for 2D elliptic problems

Let Ω be an 2D rectangular domain Ω := (0, A) × (0, B). Consider the 2D
Poisson equation:

∆u = f in Ω

supplied with Dirichlet-type boundary condition:

u|Γ = u0

where Γ denotes the boundary of Ω, f is a given function which is defined
on the domain Ω.

Define a computational grid on the closure of Ω by

(xk,j , yk,j) := (k · hx, j · hy) (k = 0, 1, ..., N ; j = 0, 1, ...,M)

where hx, hy denote the stepsizes of the grid: hx := A
N , hy := B

M . The given
numbers N,M indicate how many parts the sides of the original rectangle
are subdivided into. The points (xk,j , yk,j), are called gridpoints. The above
defined grid is equidistant. The stepsizes hx, hy need not be equal. A part
of the grid is shown in Figure 16.

The 2D scheme comes from the 1D central scheme, by approximating
the derivatives ∂2u

∂x2
and ∂2u

∂y2
separately. This results in the following discrete

system:

uk−1,j − 2uk,j + uk+1,j

h2
x

+
uk,j−1 − 2uk,j + uk,j+1

h2
y

= fk,j := f(xk, yj)

where uk,j denotes the approximate value of the solution at the gridpoint
(xk, yj), and k = 0, 1, ..., N , j = 0, 1, ...,M .
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Figure 16: A part of a 2D equidistant grid.

Remark:

• If the stepsizes in the different directions coincide: hx = hy =: h, the
above 5-point scheme becomes even simpler:

uN + uW + uS + eE − 4uC
h2

= fC

where the index C refers to a central gridpoint, and the neighbours of
C taken in the main cardinal directions are denoted by N , W , S and
E.

Let u be the exact solution of the problem. Similarly to the 1D case, intro-
duce the local error terms:

gk,j :=
u(xk−1, yj)− 2u(xk, yj) + u(xk+1, yj)

h2
x

+

+
u(xk, yj−1)− 2u(xk, yj) + u(xk, yj+1)

h2
y

− fk,j ,

and also the global error terms:

ek,j := u(xk, yj)− uk,j
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Again, by definition, the global error terms satisfy the following system of
equations:

ek−1,j − 2ek,j + ek+1,j

h2
x

+
ek,j−1 − 2ek,j + ek,j+1

h2
y

= gk,j ,

and ek,j = 0 at the boundary gridpoints xk,j (i.e. when k = 0 or k = N or
j = 0 or j = M).

Denote by Ahx,hy the discrete Laplace operator, i.e. for every grid func-
tion w which vanishes at the boundary gridpoints:

(Ahx,hyw)k,j =
wk−1,j − 2wk,j + wk+1,j

h2
x

+
wk,j−1 − 2wk,j + wk,j+1

h2
y

Theorem: The mapping Ahx,hy is self-adjoint and negative definite. The

eigenvalues of Ahx,hy are λk,j , and the corresponding eigenvectors are s(k,j),
where:

λk,j = − 4

h2
x

· sin2 kπ

2N
− 4

h2
y

· sin2 jπ

2M
, s(k,j)

p,q = sin
kpπ

N
· sin jqπ

M

where k, p = 1, ..., N − 1 and j, q = 1, ...,M − 1.
Proof: The mapping Ahx,hy is self-adjoint (check it!). The only thing that

should be proved is that Ahx,hys
(k,j) = λk,j · s(k,j). By definition:(

Ahx,hys
(k,j)

)
p,q

=

=
1

h2
x

·
(

sin
k(p− 1)π

N
− 2 sin

kpπ

N
+ sin

k(p+ 1)π

N

)
· sin jqπ

M
+

+
1

h2
x

·
(

sin
j(q − 1)π

M
− 2 sin

jqπ

M
+ sin

j(q + 1)π

M

)
· sin kpπ

N

Using the same trigonometric calculations as in the 1D case, we have:(
Ahx,hys

(k,j)
)
p,q

=

= − sin
kpπ

N
· 4

h2
x

· sin2 kπ

2N
· sin jqπ

M
− sin

jqπ

M
· 4

h2
y

· sin2 jπ

2M
· sin kpπ

N
=

= − sin
kpπ

N
sin

jqπ

M
·
(

4

h2
x

sin2 kπ

2N
+

4

h2
y

sin2 jπ

2M

)
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which completes the proof.

Corollary:

||A−1
hx,hy
|| = 1

|λ|min
=

1

|λ1,1|
=

1
4
h2x

sin2 π
2N + 4

h2y
sin2 π

2M

∼

∼ 1
4
h2x
· π2

4N2 + 4
h2y
· π2

4M2

=
1

π2
· A2B2

A2 +B2

independently of hx and hy (∼ means again the asymptotic equality when
N,M →∞ i.e. hx, hy → 0).

This is the stability result for the 2D scheme. Similarly to the 1D case, this
implies that the estimation

||e||RMS ≤ C · ||g||RMS ,

is valid also in the 2D case. The local error terms can be estimated easily,
based on Taylor series expansion around xk and yj , respectively. Utilizing
the 1D results, we have:

u(xk−1, yj)− 2u(xk, yj) + u(xk+1, yj) =
∂2u

∂x2
(xk, yj) · h2

x +O(h4
x),

and also

u(xk, yj−1)− 2u(xk, yj) + u(xk, yj+1) =
∂2u

∂y2
(xk, yj) · h2

y +O(h4
y),

Hence

gk,j =
u(xk−1, yj)− 2u(xk, yj) + u(xk+1, yj)

h2
x

+

+
u(xk, yj−1)− 2u(xk, yj) + u(xk, yj+1)

h2
y

− fk,j =

=
u(xk−1, yj)− 2u(xk, yj) + u(xk+1, yj)

h2
x

+

+
u(xk, yj−1)− 2u(xk, yj) + u(xk, yj+1)

h2
y

−∆u(xk, yj) =

= O(h2
x + h2

y)
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Consequently:
|gk,j | ≤ C0 · (h2

x + h2
y)

for some constant C0 which is independent of hx, hy and also of k, j. There-
fore:

||g||RMS ≤ C0 · (h2
x + h2

y)

which implies that the same type of estimation is valid for the global error:

||e||RMS ≤ C · C0 · (h2
x + h2

y)

Summarizing the above results we have the following theorem:

Theorem: The accuracy of the above defined finite difference method based
on the central scheme is of second order, i.e. the global error (with respect
to the root mean square) is O(h2

x + h2
y) (provided that the exact solution is

smooth enough).

Remark:

• Assume that a Neumann type boundary condition

∂u

∂n
= a

is given along a part of the boundary, for instance, along an eastern
part (see Figure 17). Here ∂u

∂n = ∂u
∂x , so that the first derivative of u

Figure 17: A part of a 2D equidistant grid, Neumann boundary condition.
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should be approximated at a point (xk, yj). The naive solution is to
use the one-sided scheme:

∂u

∂n
(xk, yj) ≈

uk,j − uk−1,j

hx

However, this scheme is of first order only, which decreases the accu-
racy on the whole domain Ω. A possible remedy is the use of a higher
order scheme for the derivative ∂u

∂n(xk, yj). A more elegant way is as
follows. Let us expand the function u in a finite Taylor series around
(xk, yj):

u(xk−1, yj) = u(xk, yj)−
∂u

∂x
(xk, yj) · hx +

1

2
· ∂

2u

∂x2
(xk, yj) · h2

x +O(h3
x)

However:
∂2u

∂x2
(xk, yj) = −∂

2u

∂y2
(xk, yj) + f(xk, yj),

and the second order derivative of u with respect to y can be ap-
proximated by the 3-point central difference scheme at an accuracy of
O(h2

y). Thus, we have obtained that:

u(xk−1, yj) = u(xk, yj)−
∂u

∂x
(xk, yj) · hx+

+
1

2
·
(
−u(xk, yj−1)− 2u(xk, yj) + u(xk, yj+1)

h2
y

+ f(xk, yj) +O(h2
y)

)
·h2
x+

+O(h3
x),

which implies:

∂u

∂x
(xk, yj) =

u(xk, yj)− u(xk−1, yj)

hx
−

−1

2
· u(xk, yj+1)− 2u(xk, yj) + u(xk, yj−1))

h2
y

· hx +
1

2
· f(xk, yj) · hx+

+O(h2
x + h2

y)

This results in the following second order scheme at Neumann bound-
ary:

uk,j − uk−1,j

hx
− 1

2
·
uk,j+1 − 2uk,j + uk,j−1

h2
y

· hx +
1

2
· fk,j · hx = ak,j
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Finally, it should be pointed out that the finite difference method still works
on non-rectangular domains as well (but the error analysis is more difficult).
One has to register the inner and the boundary gridpoints; at each inner
gridpoint, a discrete scheme is defined, while at the boundary gridpoints,
the boundary condition is to be approximated. This results in a large lin-
ear system of equations but the matrix of the system is extremely sparse,
which makes it possible to apply efficient solution techniques e.g. Krylov
subspace methods. Note, however, that the approximation of the boundary
is rough, which may decrease the accuracy. A possible solution technique
is to define gridpoints which are located on the exact boundary and to de-
fine non-equidistant schemes in the vicinity of the boundary. It should be
emphasize that the structure of the finite difference grid cannot follow the
characteristic properties of the solution. In a lot of cases, the solution is
much ’smoother’ in the middle of the domain than in the vicinity of the
boundary, so that much coarser grid would be sufficient. The above dis-
advantages and difficulties reflect to the limitations of the classical finite
difference method.

6.3 The Method of Fundamental Solutions

The Method of Fundamental Solution (MFS) is a relatively new technique for
solving homogeneous partial differential equations. We introduce the method
through the example of the 2D Laplace equation. It should be pointed out in
advance that the method is a meshless method, i.e. in contrast to the finite
difference method or the finite element method, the MFS requires neither
grid nor element structure in the domain or on the boundary. Only some
finite sets of points are needed without eny grid of element structure.

Consider the model problem

∆u = 0

in a bounded 2D domain Ω supplied with the mixed boundary condition:

u|ΓD
= u0,

∂u

∂n
|ΓN

= v0

where ΓD and ΓN form a disjoint decomposition of the boundary Γ.
The Method of Fundamental Solutions gives an approximate solution of

the problem in the form:

u(x) :=
N∑
j=1

αj · Φ(x− x̃j),
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where α1,..., αN are a priori unknown coefficients and Φ denotes the funda-
mental solution of the 2D Laplace operator:

Φ(x) := log ||x||

The points x̃1, x̃2, ..., x̃N are predefined external points (source points),
where N is a given integer number.

The method is based on the fact that Φ is a harmonic function (except
for the origin):

∆Φ(x) = 0 (x 6= 0)

Indeed, a simple vector calculus shows that if x 6= 0, then:

∆Φ(x) = div grad

(
1

2
log ||x||2

)
= div

(
1

||x||2
· x
)

=

=

〈
grad

1

||x||2
, x

〉
+

1

||x||2
· (divx) =

=

〈
− 2x

||x||4
, x

〉
+

2

||x||2
= 0.

The origin is clearly a singular point of Φ.
Consequently, the function

u(x) :=

N∑
j=1

αj · Φ(x− x̃j),

satisfies the Laplace equation exactly in all points of Ω. The coefficients
α1, ..., αN can be calculated by enforcing the boundary conditions in some
predefined boundary collocation points x1, x2, ..., xN ∈ Γ (cf Figure 18).

This results in the following system of equations:

N∑
j=1

αjΦ(xk − x̃j) = u0(xk) if xk ∈ ΓD

N∑
j=1

αj
∂Φ

∂nk
(xk − x̃j) = v0(xk) if xk ∈ ΓN

where nk denotes the outward normal unit vector at the boundary colloca-
tion point xk. The normal derivative of Φ can be calculated easily, yielding:

∂Φ

∂nk
(x) =

〈x, nk〉
||x||2

The basic algorithm of the method is extremely simple:
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Figure 18: Source and boundary collocation points.

• Define a set of external source points x̃1, x̃2, ... , x̃N .

• Define a set of boundary collocation points x1, x2, ... , xN .

• Generate and solve the system of equations

N∑
j=1

αjΦ(xk − x̃j) = u0(xk) if xk ∈ ΓD

N∑
j=1

αj
∂Φ

∂nk
(xk − x̃j) = v0(xk) if xk ∈ ΓN

• The approximate solution is:

u(x) :=
N∑
j=1

αj · Φ(x− x̃j)

The algorithm can be programmed in a very simple way. However,
the matrix of the resulting system is generally fully populated and non-
symmetric. In many cases, the matrix of the system is extremely ill-condi-
tioned. The greater the distance of the source points from the boundary,
the higher the condition number of the matrix. It should be also pointed
out that the proper location of the source points is far from being evident,
and no ’optimal’ arrangement of source points exist in general.

Remark:
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• The numbers of source and collocation points need not be equal. If
they are different, the linear system has a nonsquare matrix. In this
case, a least squares approach or the Singular Value Decomposition
can be used.

The method can be generalized to Poisson equations as well, using a scat-
tered data interpolation technique based on radial basis functions (RBF).
Consider the Poisson equation

∆u = f

in the domain Ω supplied with the mixed boundary condition:

u|ΓD
= u0,

∂u

∂n
|ΓN

= v0

The solution is sought as a sum of a particular solution and a homogeneous
solution:

u = uP + uH ,

where the function uP is assumed to satisfy the Poisson equation

∆uP = f

without requiring any boundary condition. Once a particular solution uP has
been determined, the homogeneous solution can be obtained by solving a
Laplace equation supplied with modified boundary conditions:

uH |ΓD
= u0 − uP |ΓD

,
∂uH
∂n
|ΓN

= v0 −
∂uP
∂n
|ΓN

Obviously, the function u = uP + uH satisfies the Poisson equation and the
original boundary conditions. This technique is known as the method of
particular solutions.

The homogeneous equation can be solved by the Method of Fundamental
Solutions, so that the only problem is to find a particular solution.

Define additional points scattered in the interior of the domain: w1, w2,
... , wM ∈ Ω. Let Ψ be a radial basis function, and approximate the function
f by a scattered data interpolation based on the radial basis function Ψ (e.g.
a multiquadric function or the thin plate spline function etc.). Recall that
the interpolation function has the form:

f(x) =
M∑
j=1

βj ·Ψ(x− wj),
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where the coefficients β1, ..., βM can be calculated by enforcing the interpo-
lation conditions:

M∑
j=1

βj ·Ψ(wk − wj) = f(wk) (k = 1, ...,M)

The crucial idea is to find another radial basis function Θ such that

∆Θ = Ψ

is satisfied. If Θ is such a radial basis function, then the function

uP (x) :=
M∑
j=1

βj ·Θ(x− wj)

is an (approximate) particular solution, since at the interior interpolation
points:

∆uP (wk) =
M∑
j=1

βj ·∆Θ(wk − wj) =

=
M∑
j=1

βj ·Ψ(wk − wj) = f(wk) (k = 1, ...,M)

The overall algorithm can be summarized as follows:

• Define some interpolation points w1, w2, ..., wM scattered in the inte-
rior of the domain Ω.

• Choose a radial basis function Ψ, and perform an interpolation based
on the radial basis function Ψ, the interpolation points w1, w2, ..., wM
and the corresponding values f(w1), f(w2), ..., f(wM ). Calculate the
coefficients β1, β2, ..., βM by solving the interpolation equations.

• Using the same coefficients βj computed in the previous step, define
the particular solution by

uP (x) :=

M∑
j=1

βj ·Θ(x− wj)

where the radial basis function Θ satisfies the equality ∆Θ = Ψ.
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• Solve the Dirichlet problem

∆uH = 0

supplied with the modified boundary conditions

uH |ΓD
= u0 − uP |ΓD

,
∂uH
∂n
|ΓN

= v0 −
∂uP
∂n
|ΓN

using the Method of Fundamental Solutions.

• The (approximate) solution of the original mixed problem is:

u = uH + uP

The problem which has still to be solved is the proper definition of the
radial basis function Θ provided that the function Ψ is known. Here three
concrete choices are presented. For the sake of simplicity, polar coordinates
are used. The formulas can be verified by straightforward but more or less
lengthy calculations; they are left as an exercise.

1. Define Ψ by

Ψ(r) := 1 + r

Then

Θ(r) =
1

4
r2 +

1

9
r3

2. (Thin plate spline.) Define Ψ by

Ψ(r) := r2 · log r

Then

Θ(r) =
1

16
r4 log r − 1

32
r4

3. (Multiquadric function.) Define Ψ by

Ψ(r) :=
√
r2 + c2

Then

Θ(r) =
1

9
· (4c2 + r2) ·

√
r2 + c2 − c3

3
· log

(
c+

√
r2 + c2

)

82


	Introduction
	Some vector calculus
	Differentiation in vector fields
	Integrals

	From physical laws to partial differential equations
	Heat conduction
	Diffusion
	Electric current in 3D materials
	Seepage through porous medium

	Boundary conditions
	The Finite Element Method
	Theory in a nutshell
	A reminder
	Abstract variational problems

	Finite Element Method for 1D Poisson problems
	Finite element subspaces
	Error estimations
	Finite elements for more general 1D problems
	1D problems, inhomogeneous Dirichlet boundary condition
	1D problems, mixed boundary condition

	Finite Element Method for 2D Poisson problems
	Finite element subspaces
	Some 2D finite elements


	Other computational techniques - an outlook
	Method of Fourier
	Fourier's method for 2D Poisson equation
	Fourier's method for 2D Laplace equation

	The Finite Difference Method
	Finite difference method for 1D elliptic problems
	Finite difference method for 2D elliptic problems

	The Method of Fundamental Solutions


