Numerical Methods 1. Fundamental concepts and relationships

How to consider a function to be ,great" or ,,small"?

- In the function space $C[a, b]$ (the space of continuous functions defined on the interval $[a, b]$), introduce:

$$
\|f\|_{C}:=\max _{a \leq x \leq b}|f(x)| \quad \text { (maximum norm or C-norm) }
$$

- Another possibility:

$$
\|f\|_{1}:=\int_{a}^{b}|f(x)| d x \quad\left(L_{1} \text {-norm }\right)
$$

- A third possibility: $\|f\|_{2}:=\sqrt{\int_{a}^{b}|f(x)|^{2} d x} \quad\left(L_{2}\right.$-norm)
\ldots and there are a lot of other possibilities ..

In all cases:

- $\|f\| \geq 0$, and $\|f\|=0$ if and only if $f=0$
- $\|\alpha \cdot f\|=|\alpha| \cdot\|f\|$
- $\|f+g\| \leq\|f\|+\|g\| \quad$ (,,triangle inequality")

How to consider two functions to be „near" or „far" from each other?

Define the distance of the functions f and g as: $\|f-g\|$

How to define a sequence of functions to converge to a function?
$f_{n} \rightarrow f$, if $\left\|f_{n}-f\right\| \rightarrow 0$.

- In \mathbf{R}^{n} (i.e. in the vector space of the ordered, real n-tuples), introduce:

$$
\|\mathbf{x}\|_{\max }:=\max _{1 \leq j \leq n}\left|x_{j}\right| \quad(\text { maximum norm })
$$

- Another possibility:

$$
\|\mathbf{x}\|_{1}:=\sum_{j=1}^{n}\left|x_{j}\right| \quad \text { (1-norm or sum norm) }
$$

- A third possibility:

$$
\|\mathbf{x}\|_{2}:=\sqrt{\sum_{j=1}^{n}\left|x_{j}\right|^{2}} \quad \text { (2-norm or Euclidean norm) }
$$

\ldots and there are a lot of other possibilities ...

In all cases:

- $\|\mathbf{x}\| \geq 0$, and $\|\mathbf{x}\|=0$ if and only if $\mathbf{x}=\mathbf{0}$
- $\|\alpha \cdot \mathbf{x}\|=|\alpha| \cdot\|\mathbf{x}\|$
- $\|\mathbf{x}+\mathbf{y}\| \leq\|\mathbf{x}\|+\|\mathbf{y}\| \quad$ (,,triangle inequality")

How to consider two vectors to be „near" or „far" from each other?

Define the distance of the vectors \mathbf{x} and \mathbf{y} as: $\|\mathbf{x}-\mathbf{y}\|$

How to define a sequence of vectors to converge to a vector?

$\mathbf{x}_{n} \rightarrow \mathbf{x}$, if $\left\|\mathbf{x}_{n}-\mathbf{x}\right\| \rightarrow 0$.

Vector spaces

A nonempty set X is a (real) vector space, if there exists and addition between the elements of X, and a multiplication between the elements of \mathbf{R} and X such that the following vector space axioms are fulfilled:

For arbitrary $x, y, z \in X, \quad \lambda, \mu \in \mathbf{R}$:

- $x+y=y+x \quad$ (the addition is commutative);
- $x+(y+z)=(x+y)+z \quad$ (the addition is associative);
- there exists a zero vector $\mathbf{0}$ in X, such that $x+\mathbf{0}=x$ is valid for every $x \in X$;
- the addition is invertible, i.e. for every vector $x \in X$ there exists another vector $x_{-1} \in X$ such that their sum is the zero vector: $x+x_{-1}=\mathbf{0}$.
- $\lambda \cdot(\mu \cdot x)=(\lambda \mu) \cdot x$
- $\lambda \cdot(x+y)=\lambda \cdot x+\lambda \cdot y \quad(\lambda+\mu) \cdot x=\lambda \cdot x+\mu \cdot x$
- $1 \cdot x=x$

The subset $X_{0} \subset X$ is called subspace, if X_{0} itself is also a vector space with respect to the operations defined in X.

Examples:

- The set of the real (complex) numbers $\mathbf{R}(\mathbf{C})$ is a vector space with respect to the ordinary real (complex) addition and multiplication.
- The set of ordered real pairs \mathbf{R}^{2} is a vector space with respect to the componentwise operations:

$$
(a, b)+(c, d):=(a+c, b+d), \quad \lambda \cdot(a, b):=(\lambda a, \lambda b)
$$

- The set of ordered real triples \mathbf{R}^{3} is a vector space with respect to the componentwise operations:
$(a, b, c)+(u, v, w):=(a+u, b+v, c+w), \quad \lambda \cdot(a, b, c):=(\lambda a, \lambda b, \lambda c)$
- The set of ordered real n-tuples \mathbf{R}^{n} is a vector space with respect to the componentwise operations:
$\left(x_{1}, x_{2}, \ldots, x_{n}\right)+\left(y_{1}, y_{2}, \ldots, y_{n}\right):=\left(x_{1}+y_{1}, x_{2}+y_{2}, \ldots, x_{n}+y_{n}\right)$
$\lambda \cdot\left(x_{1}, x_{2}, \ldots, x_{n}\right):=\left(\lambda x_{1}, \lambda x_{2}, \ldots, \lambda x_{n}\right)$
- The set of $n \times m$ matrices $\mathbf{M}_{n \times m}$ is a vector space with respect to the componentwise operations:
$\left[a_{k j}\right]+\left[b_{k j}\right]:=\left[a_{k j}+b_{k j}\right]$
$\lambda \cdot\left[a_{k j}\right]:=\left[\lambda a_{k j}\right]$

Further examples:

- Let A be an arbitrary set. The set of all functions $f: A \rightarrow \mathbf{R}$ form a vector space with respect to the ordinary operations of functions:
$(f+g)(x):=f(x)+g(x), \quad(\lambda \cdot f)(x):=\lambda \cdot f(x)$
- Let $[a, b]$ be a bounded, closed interval. The continuous functions defined on $[a, b]$ form a vector space (denoted by $C[a, b]$). In fact, this is a subspace of the vector space of all functions defined on $[a, b]$.
- Let $[a, b]$ be a bounded, closed interval. The functions defined on $[a, b]$ which are k times continuously differentiable form a vector space (denoted by $C^{k}[a, b]$). This is a subspace of $C[a, b]$. Moreover, $C^{m}[a, b]$ is a subspace of $C^{k}[a, b]$ provided that $m>k$.

Normed spaces

The vector space X is called normed space, if a function from X into \mathbf{R} is defined (norm, denoted by $\|\|$.$) such that the following norm axioms are fulfilled:$

- $\|x\| \geq 0$
- $\|x\|=0$ if and only if $x=\mathbf{0}$;
- $\|\alpha \cdot x\|=|\alpha| \cdot\|x\|$;
- $\|x+y\| \leq\|x\|+\|y\|$ (triangle inequality).

Examples:

- In \mathbf{R}, define $\|x\|:=|x|$; then the function $\|$.$\| fulfils the norm axioms.$
- In \mathbf{C}, define $\|z\|:=|z|$; then the function $\|$.$\| fulfils the norm axioms. (Prove the triangle$ inequality!)

Examples in finite dimensional space:

In \mathbf{R}^{n}, define $\|x\|_{\max }:=\max \left(\left|x_{1}\right|, \ldots,\left|x_{n}\right|\right)$; then the function $\|\cdot\|_{\max }$ is a norm (maximum norm). The triangle inequality:

$$
\|x+y\|_{\max }=\max _{k}\left|x_{k}+y_{k}\right| \leq \max _{k}\left|x_{k}\right|+\max _{k}\left|y_{k}\right|=\|x\|_{\max }+\|y\|_{\max }
$$

Another possibility: $\|x\|_{1}:=\sum_{k=1}^{n}\left|x_{k}\right|$ (1-norm or sum norm). The triangle inequality:

$$
\|x+y\|_{1}=\sum_{k=1}^{n}\left|x_{k}+y_{k}\right| \leq \sum_{k=1}^{n}\left|x_{k}\right|+\sum_{k=1}^{n}\left|y_{k}\right|=\|x\|_{1}+\|y\|_{1}
$$

A third possibility: $\|x\|_{2}:=\sqrt{\sum_{k=1}^{n}\left|x_{k}\right|^{2}} \quad$ (2-norm or Euclidean norm). The triangle inequality:

$$
\|x+y\|_{2}^{2}=\sum_{k=1}^{n}\left|x_{k}+y_{k}\right|^{2}=\sum_{k=1}^{n}\left|x_{k}\right|^{2}+2 \sum_{k=1}^{n} x_{k} y_{k}+\sum_{k=1}^{n}\left|y_{k}\right|^{2} \leq\|x\|_{2}^{2}+2\|x\|_{2} \cdot\|y\|_{2}+\|y\|_{2}^{2},
$$

where we have utilized the Cauchy inequality (see later).

Examples in infinite dimensional spaces:

In $C[a, b]$, define $\|f\|_{C}:=\max _{a \leq x \leq b}|f(x)|$; then the function $\|.\|_{C}$ is a norm (maximum norm or C-norm).
Another possibility: $\|f\|_{1}:=\int_{a}^{b}|f(x)| d x$, which defines a norm, too (L_{1}-norm).
A third possibility: $\|f\|_{2}:=\sqrt{\int_{a}^{b} \mid f\left(\left.x\right|^{2} d x\right.} \quad$ (L_{2}-norm). The triangle inequality:

$$
\begin{gathered}
\|f+g\|_{2}^{2}=\int_{a}^{b}|f(x)+g(x)|^{2} d x=\int_{a}^{b}|f(x)|^{2} d x+2 \int_{a}^{b} f(x) g(x) d x+\int_{a}^{b}|g(x)|^{2} d x \leq \\
\leq\|f\|_{2}^{2}+2\|f\|_{2} \cdot\|g\|_{2}+\|g\|_{2}^{2}
\end{gathered}
$$

where we have utilized the Cauchy-Schwarz-inequality.

Banach spaces

Let X be a normed space. The vector sequence $\left(x_{n}\right) \subset X$ is said to be

- bounded, if the sequence $\left\|x_{n}\right\|$ is bounded, i.e. $\left\|x_{n}\right\| \leq C$ is valid for some $C \geq 0$;
- converging to the vector $x \in X$, if the sequence $\left\|x_{n}-x\right\|$ tends to 0 , i.e. $\left\|x_{n}-x\right\| \rightarrow 0$;
- Cauchy sequence, if for every $\varepsilon>0$ there is an index N such that $\left\|x_{n}-x_{m}\right\|<\varepsilon$ is valid for all indices $n, m \geq N$.

> In arbitrary normed space X :
> every convergent sequence is bounded, and every convergent sequence is a Cauchy sequence.

The normed space X is complete or Banach space, if every Cauchy sequence is convergent in X.

Examples:

- Every finite dimensional normed space is a Banach space.
- The function space $C[a, b]$ is Banach space with respect to the C-norm, but not with respect to the L_{1}-norm.

Euclidean spaces, Hilbert spaces

The vector space X is said to be an Euclidean space, if a bivariate function is defined on X (inner product or scalar product, denoted by $\langle.,$.$\rangle) such that the following properties are valid:$

- $\langle x, x\rangle \geq 0$, and $\langle x, x\rangle=0$ if and only if $x=\mathbf{0}$
- $\langle y, x\rangle=\overline{\langle x, y\rangle}$
- $\langle\alpha x, y\rangle=\alpha \cdot\langle x, y\rangle$
- $\langle x+y, z\rangle=\langle x, z\rangle+\langle y, z\rangle$

Every Euclidean space X is a normed space with respect to the norm $\|x\|:=\sqrt{\langle x, x\rangle}$
(the norm induced by the inner product).
Moreover, for every $x, y \in X$, the Cauchy inequality is valid: $|\langle x, y\rangle| \leq\|x\| \cdot\|y\|$

The Euclidean space X is said to be a Hilbert space, if it is complete with respect to the norm induced by the inner product.

Every finite dimensional Euclidean space is also a Hilbert space.

Proof of the Cauchy inequality:

For simplicity, assume that the space is real. Then, for arbitrary vectors x, y :

$$
\|x+y\|^{2}=\|x\|^{2}+2\langle x, y\rangle+\|y\|^{2}
$$

For arbitrary $x, y \in X, \alpha \in \mathbf{R}$, the inequality $\|x-\alpha y\|^{2} \geq 0$ is valid, therefore:

$$
\|x-\alpha y\|^{2}=\|x\|^{2}-2 \alpha\langle x, y\rangle+\alpha^{2}\|y\|^{2} \geq 0
$$

Define $\alpha:=\|x\| /\|y\|$, then we have: $\|x\|^{2}-2 \frac{\|x\|}{\|y\|}\langle x, y\rangle+\frac{\|x\|^{2}}{\|y\|^{2}}\|y\|^{2} \geq 0$,
whence $\langle x, y\rangle \leq\|x\| \cdot\|y\|$. Substituting $(-x)$ instead of $x: \quad-\langle x, y\rangle \leq\|x\| \cdot\|y\| \quad$ is also valid.
Proof of the triangle inequality (with respect to the norm induced by the inner product):

$$
\begin{gathered}
\|x+y\|^{2}=\|x\|^{2}+2\langle x, y\rangle+\|y\|^{2} \leq \\
\leq\|x\|^{2}+2|\langle x, y\rangle|+\|y\|^{2} \leq \\
\leq\|x\|^{2}+2\|x\| \cdot\|y\|+\|y\|^{2}=(\|x\|+\|y\|)^{2}
\end{gathered}
$$

Examples:

- The space \mathbf{R} is a Hilbert space with the inner product $\langle x, y\rangle:=x y$.
- The space \mathbf{C} is a Hilbert space with the inner product $\langle x, y\rangle:=x \bar{y}$.
- The space \mathbf{R}^{2} is a Hilbert space with the inner product $\langle x, y\rangle:=x_{1} y_{1}+x_{2} y_{2}$.

$$
\left\langle\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right\rangle=x_{1} y_{1}+x_{2} y_{2}=\operatorname{Rr} \cos t \cos T+R r \sin t \sin T=R r \cos (T-t)
$$

A geometrical illustration:

In short: $\langle x, y\rangle=\|x\| \cdot\|y\| \cdot \cos \theta$, where θ denotes the angle of the vectors x and y.

Euclidean spaces, examples:

The space \mathbf{R}^{n} is a Hilbert space with the inner product $\langle x, y\rangle:=\sum_{k=1}^{n} x_{k} y_{k}$ (which induces the Euclidean norm).
The form of the Cauchy inequality is: $\left|\sum_{k=1}^{n} x_{k} y_{k}\right| \leq \sqrt{\sum_{k=1}^{n}\left|x_{k}\right|^{2}} \cdot \sqrt{\sum_{k=1}^{n}\left|y_{k}\right|^{2}}$.
Neither the maximum norm nor the sum norm can be induced by inner product.
The space $C[a, b]$ is an Euclidean space with the L_{2}-inner product $\langle f, g\rangle:=\int_{a}^{b} f(x) \overline{g(x)} d x$, but it is not complete i.e. it is not a Hilbert space. However, the space $L_{2}(a, b)$ is a Hilbert space.
The form of the Cauchy inequality is: $\left|\int_{a}^{b} f(x) \overline{g(x)} d x\right| \leq \sqrt{\int_{a}^{b}|f(x)|^{2} d x} \cdot \sqrt{\int_{a}^{b}|g(x)|^{2} d x}$
(Cauchy-Schwarz inequality)
Neither the maximum norm nor the L_{1}-norm can be induced by inner product.

Linear operators

Let X, Y be vector spaces. A mapping $A: X \rightarrow Y$ is said to be a linear mapping or linear operator, if it preserves the operations, i.e. $A(x+y)=A(x)+A(y)$ and $A(\lambda \cdot x)=\lambda \cdot A(x)$ are valid for every vectors $x, y \in X$ and scalar λ. If $Y=\mathbf{R}$ or \mathbf{C}, then the mapping A is often called linear functional.

Examples:

- $A: \mathbf{R} \rightarrow \mathbf{R}, A x:=a \cdot x$ (where $a \in \mathbf{R}$ is an arbitrary constant). Then A is a linear mapping.
- $D: C^{1}[a, b] \rightarrow C[a, b], \quad D f:=f^{\prime}$. (the operator of the differentiation). Then D is a linear operator.
- Define $I: C[a, b] \rightarrow \mathbf{R}$, If $:=\int_{a}^{b} f(x) d x$. Then I is a linear functional.
- Let I be a finite, closed interval which contains the zero. Define $\delta: C[I] \rightarrow \mathbf{R}, \delta f:=f(0)$. Then δ is a linear functional. (Dirac functional or δ-functional)
- Let $A \in \mathbf{M}_{n \times n}$ be arbitrary. The mapping $\mathbf{R}^{n} \rightarrow \mathbf{R}^{n}, \quad x \rightarrow A x$ is a linear mapping of \mathbf{R}^{n} into itself (denoted by also A, if it causes no misunderstanding).

Boundedness and continuity

Let X, Y be normed spaces and let $A: X \rightarrow Y$ be a linear operator.
The linear operator $A: X \rightarrow Y$ is said to be bounded, if there exists a number $K \geq 0$ such that $\|A x\| \leq K \cdot\|x\|$ is valid for every $x \in X$. The number K is a bound of the operator A.

A linear operator $A: X \rightarrow Y$ is bounded if and only if it is continuous everywhere.

The least upper bound of A is said to be the (operator) norm of A (denoted by $\|A\|$).

$$
\|A\|=\sup \{\|A x\|: x \in X,\|x\| \leq 1\}
$$

In short: if the linear operator $A: X \rightarrow Y$ is continuous (i.e. bounded), then $\|A x\| \leq\|A\| \cdot\|x\|$, and $\|A\|$ a least number with this property.

The operator norm depends on the norms of the spaces X and Y !
If $A: X \rightarrow Y$ and $B: Y \rightarrow Z$ are bounded then so is the product operator $B A$, and $\|B A\| \leq\|B\| \cdot\|A\|$

Examples for bounded (continuous) linear operators:

- The identity operator $I: X \rightarrow X$ is bounded, its norm is always 1 (independently of the norm of the space X).
- The zero operator is bounded, its norm is always 0 (independently of the norm of the space X).

If the spaces X, Y are finite dimensional spaces, then every linear operator $A: X \rightarrow Y$ is bounded.

- The operator of the differentiation $D: C^{1}[a, b] \rightarrow C[a, b], D f:=f^{\prime}$ is bounded with respect to the norms of these spaces.
- The Dirac functional is bounded with respect to the $C(I)$-norm, but it is not bounded with respect to the L_{1}-norm.

Matrices and finite dimensional linear mappings

Let $A \in \mathbf{M}_{m \times n}$, and define the following mapping:

$$
\mathbf{R}^{n} \rightarrow \mathbf{R}^{m}, \quad x \rightarrow A x
$$

Thus we have defined a $\mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ linear mapping (denoted by also A). For each matrix, there corresponds a linear operator and vice versa.

However, $\mathbf{M}_{m \times n}$ itself is a vector space. Therefore one can define several matrix norms on it.

Matrix norms which are NOT operator norms:

- Sum norm: $\|A\|:=\sum_{k=1}^{n} \sum_{j=1}^{n}\left|a_{k j}\right|$
- Frobenius norm: $\|A\|:=\sqrt{\sum_{k=1}^{n} \sum_{j=1}^{n}\left|a_{k j}\right|^{2}}$

These norms cannot be induced by vector norms (since the norm of the identity matrix differs from 1).

Matrix norms induced by vector norms (operator norms):
If both in \mathbf{R}^{m} and in \mathbf{R}^{n} the maximum norm is given, then the corresponding operator norm is the maximum of the row sums of the absolute values of the matrix entries (row norm):

$$
\|A\|_{\max }=\max _{1 \leq k \leq m} \sum_{j=1}^{n}\left|a_{k j}\right|
$$

$$
\|A x\|_{\max }=\max _{1 \leq k \leq m}\left|\sum_{j=1}^{n} a_{k j} x_{j}\right| \leq \max _{1 \leq k \leq m} \sum_{j=1}^{n}\left|a_{k j}\right| \cdot\left|x_{j}\right| \leq\left(\max _{1 \leq k \leq m} \sum_{j=1}^{n}\left|a_{k j}\right|\right) \cdot\left(\max _{1 \leq j \leq n}\left|x_{j}\right|\right)=\|A\|_{\max } \cdot\|x\|_{\max }
$$

If both in \mathbf{R}^{m} and in \mathbf{R}^{n} the sum norm is given, then the corresponding operator norm is the maximum of the column sums of the absolute values of the matrix entries (column norm):

$$
\|A\|_{1}=\max _{1 \leq j \leq n} \sum_{k=1}^{m}\left|a_{k j}\right|
$$

$$
\|A x\|_{1}=\sum_{k=1}^{m}\left|\sum_{j=1}^{n} a_{k j} x_{j}\right| \leq \sum_{k=1}^{m} \sum_{j=1}^{n}\left|a_{k j}\right| \cdot\left|x_{j}\right|=\sum_{j=1}^{n}\left(\sum_{k=1}^{m}\left|a_{k j}\right|\right) \cdot\left|x_{j}\right| \leq\left(\max _{1 \leq j \leq n} \sum_{k=1}^{m}\left|a_{k j}\right|\right) \cdot \sum_{j=1}^{n}\left|x_{j}\right|=\|A\|_{1} \cdot\|x\|_{1}
$$

If both in \mathbf{R}^{m} and in \mathbf{R}^{n} the Euclidean norm is given, then the expression of the matrix norm is not simple. However, if A is self-adjoint and positive definite, then the operator norm equals to the maximal eigenvalue of the matrix.

Trigonometric Fourier series in $L_{2}(0,2 \pi)$

An arbitrary real function $f \in L_{2}(0,2 \pi)$ can be expressed as a trigonometric Fourier series which is convergent with respect to the $L_{2}(0,2 \pi)$-norm:

$$
f(x)=a_{0}+\sum_{k=1}^{\infty} a_{k} \cos k x+\sum_{k=1}^{\infty} b_{k} \sin k x
$$

where the coefficients can be calculated as:

$$
\begin{aligned}
& a_{0}=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(x) d x \\
& a_{k}=\frac{1}{\pi} \int_{0}^{2 \pi} f(x) \cos k x d x, \quad b_{k}=\frac{1}{\pi} \int_{0}^{2 \pi} f(x) \sin k x d x
\end{aligned}
$$

Complex exponential function

For any $z \in \mathbf{C}$, define $e^{z}:=\sum_{k=0}^{\infty} \frac{z^{k}}{k!}=1+\frac{z}{1!}+\frac{z^{2}}{2!}+\frac{z^{3}}{3!}+\ldots \quad$ (exponential series)
The exponential series is absolutely convergent for each $z \in \mathbf{C}$. If z is real, then the sum equals to the value of the ordinary (real) exponential function.

$$
\text { (Euler's formula): For every } t \in \mathbf{R}: e^{i t}=\cos t+i \sin t .
$$

Utilizing the well-known Taylor series of the sine and cosine functions:

$$
\cos t=1-\frac{t^{2}}{2!}+\frac{t^{4}}{4!}-\frac{t^{6}}{6!}+\ldots, \quad \sin t=t-\frac{t^{3}}{3!}+\frac{t^{5}}{5!}-\frac{t^{7}}{7!}+\ldots
$$

which implies that:

$$
e^{i t}=1+\frac{i t}{1!}+\frac{i^{2} t^{2}}{2!}+\frac{i^{3} t^{3}}{3!}+\frac{i^{4} t^{4}}{4!}+\frac{i^{5} t^{5}}{5!} \ldots=1+\frac{i t}{1!}-\frac{t^{2}}{2!}-\frac{i t^{3}}{3!}+\frac{t^{4}}{4!}+\frac{i t^{5}}{5!} \ldots
$$

Separating the real and imaginary parts, we have the theorem.

The Discrete Fourier Transform (DFT)

If $f_{0}, f_{1}, f_{2}, \ldots, f_{N-1} \in \mathbf{C}$ is a finite sequence, then define its discrete Fourier transform as:

$$
\hat{f}_{k}:=\sum_{j=0}^{N-1} f_{j} e^{\frac{2 k j \pi}{N} i} \quad(k=0,1,2, \ldots, N-1)
$$

Relationship with the Fourier series: Let f be a continuous function defined on the interval $[0,2 \pi]$, and denote by $f_{j}:=f\left(\frac{2 j \pi}{N}\right)$. Then the sum $\frac{1}{N} \sum_{j=0}^{N-1} f_{j} e^{\frac{2 k j \pi}{N} i}$ is a Riemann sum of the integral $\frac{1}{2 \pi} \int_{0}^{2 \pi} f(x) e^{i k x} d x$. Utilizing Euler's formula, we have:
$\frac{1}{N} \hat{f}_{k}=\frac{1}{N} \sum_{j=0}^{N-1} f_{j} e^{\frac{2 k j \pi}{N} i} \approx \frac{1}{2 \pi} \int_{0}^{2 \pi} f(x) e^{i k x} d x=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(x) \cos k x d x+i \cdot \frac{1}{2 \pi} \int_{0}^{2 \pi} f(x) \sin k x d x=a_{k}+i b_{k}$
where a_{k}, b_{k} are the trigonometric Fourier coefficients.
Number of arithmetic operations: $O\left(N^{2}\right)$, which is too high!

The inverse Discrete Fourier Transform (iDFT)

Every finite sequence can be reconstructed from its DFT, namely:

$$
f_{k}:=\frac{1}{N} \sum_{j=0}^{N-1} \hat{f}_{j} e^{-\frac{2 k j \pi}{N} i} \quad(k=0,1,2, \ldots, N-1)
$$

(inverse Discrete Fourier Transform)
For arbitrary $k=0,1,2, \ldots, N-1$, we have:
$\frac{1}{N} \sum_{j=0}^{N-1} \hat{f}_{j} e^{-\frac{2 k j \pi}{N} i}=\frac{1}{N} \sum_{j=0}^{N-1 N-1} \sum_{r=0} e^{\frac{2 r j \pi}{N} i} e^{-\frac{2 k j \pi}{N} i}=\sum_{r=0}^{N-1} f_{r} \frac{1}{N} \sum_{j=0}^{N-1} e^{\frac{2(r-k) j \pi}{N} i}=\sum_{r=0}^{N-1} f_{r} \frac{1}{N} \sum_{j=0}^{N-1} z^{j}$,
where $z:=e^{\frac{2(r-k) \pi}{N} i}$. If $r=k$, then $z=1$, therefore $\frac{1}{N} \sum_{j=0}^{N-1} z^{j}=1$. If r differs from k, then z
differs from 1 , and the inner sum is the sum of a finite geometric sequence:
$\sum_{j=0}^{N-1} z^{j}=\frac{z^{N}-1}{z-1}=\frac{e^{2(r-k) \pi i}-1}{z-1}=\frac{1-1}{z-1}=0$, which completes the proof.

The Fast Fourier Transform (FFT)

Denote by $F_{N}: \mathbf{C}^{N} \rightarrow \mathbf{C}^{N}$ the (linear!) operator of the DFT:
$\left(F_{N} f\right)_{k}:=\sum_{j=0}^{N-1} f_{j} e^{\frac{2 k j \pi}{N} i} \quad(k=0,1, \ldots, N-1)$
Assume that N is even: $N:=2 N_{1}$. Let us separate the terms with even and odd indices in the expression of $\left(F_{N} f\right)_{k}$. First, let k be a 'small' index: $k=0,1, \ldots, N_{1}-1$:

$$
\begin{aligned}
\left(F_{N} f\right)_{k}=\sum_{l=0}^{N_{1}-1} f_{2 l} e^{\frac{2 \pi i}{N} k \cdot 2 l} & +\sum_{l=0}^{N_{1}-1} f_{2 l+1} e^{\frac{2 \pi i}{N} k \cdot(2 l+1)}=\sum_{l=0}^{N_{1}-1} f_{2 l} e^{\frac{2 \pi i}{N} k \cdot 2 l}+e^{\frac{2 \pi i}{N} k \sum_{l=0}^{N_{1}-1}} f_{2 l+1} e^{\frac{2 \pi i}{N} k \cdot 2 l}= \\
& =\sum_{l=0}^{N_{1}-1} f_{2 l} e^{\frac{2 \pi i}{N_{1} k l}}+e^{\frac{2 \pi i}{N} k} \sum_{l=0}^{N_{1}-1} f_{2 l+1} e^{\frac{2 \pi i}{N_{1} k l}}
\end{aligned}
$$

The Fast Fourier Transform (FFT)

Denote by $F_{N}: \mathbf{C}^{N} \rightarrow \mathbf{C}^{N}$ the (linear!) operator of the DFT:
$\left(F_{N} f\right)_{k}:=\sum_{j=0}^{N-1} f_{j} e^{\frac{2 k j \pi}{N} i} \quad(k=0,1, \ldots, N-1)$
Assume that N is even: $N:=2 N_{1}$. Let us separate the terms with even and odd indices in the expression of $\left(F_{N} f\right)_{k}$. Now consider the 'big' indices having the form $N_{1}+k$, where $k=0,1, \ldots, N_{1}-1$:

$$
\begin{aligned}
\left(F_{N} f\right)_{N_{1}+k}= & \sum_{l=0}^{N_{1}-1} f_{2 l} e^{\frac{2 \pi i}{N_{1}}\left(N_{1}+k\right) l}+e^{\frac{2 \pi i}{N}\left(N_{1}+k\right)} \cdot \sum_{l=0}^{N_{1}-1} f_{2 l+1} e^{\frac{2 \pi i}{N_{1}}\left(N_{1}+k\right) l}= \\
& =\sum_{l=0}^{N_{1}-1} f_{2 l} e^{\frac{2 \pi i}{N_{1} k l}-e^{\frac{2 \pi i}{N} k} \cdot \sum_{l=0}^{N_{1}-1} f_{2 l+1} e^{\frac{2 \pi i}{N_{1}} k l}}
\end{aligned}
$$

In both cases, both sums on the right-hand sides are discrete Fourier transforms with smaller vectors. The procedure can recursively be continued, if N is a power of two.

The recursive algorithm of the Fast Fourier Transform

- $N_{1}:=N / 2, \quad f^{(0)}:=\left(f_{0}, f_{2}, \ldots, f_{2 N_{1}-2}\right), \quad f^{(1)}:=\left(f_{1}, f_{3}, \ldots, f_{2 N_{1}-1}\right)$

With recursive invocations, define

- $\hat{f}^{(0)}:=F_{N_{1}} f^{(0)}, \quad \hat{f}^{(1)}:=F_{N_{1}} f^{(1)}$
- $\left(F_{N} f\right)_{k} \quad:=\hat{f}_{k}^{(0)}+e^{\frac{2 \pi i k}{N}} \cdot \hat{f}_{k}^{(1)} \quad\left(k=0,1, \ldots, N_{1}-1\right)$
$\left(F_{N} f\right)_{N_{1}+k}:=\hat{f}_{k}^{(0)}-e^{\frac{2 \pi i k}{N}} \cdot \hat{f}_{k}^{(1)} \quad\left(k=0,1, \ldots, N_{1}-1\right)$
where in the case of $N=1$, we have $F_{1} f:=f$ (here f has one component only). Number of arithmetic operations: $O(N \log N)$, which is much better than $O\left(N^{2}\right)$!

The algorithm can clearly generalized for the computation of the inverse Discrete Fourier Transform without difficulty.

Two-dimensional Discrete Fourier Transform

The DFT of a matrix $f \in \mathbf{M}_{N \times N}$ is the matrix $\hat{f} \in \mathbf{M}_{N \times N}$ with the following entries:

$$
\hat{f}_{k, j}=\sum_{r=0}^{N-1 N-1} \sum_{s=0} e^{\frac{2 \pi i k r}{N}} e^{\frac{2 \pi i j s}{N}}
$$

Denote by F the 1D DFT, then:

$$
\hat{f}_{k, j}=\sum_{r=0}^{N-1}\left(\sum_{s=0}^{N-1} f_{r, s} e^{\frac{2 \pi i j s}{N}}\right) e^{\frac{2 \pi i k r}{N}}=\sum_{r=0}^{N-1}\left(F f_{r, .}\right)_{j} e^{\frac{2 \pi i k r}{N}}
$$

The algorithm of the 2D DFT:

- For every row of the matrix f, substitute the 1D DFT of the corresponding row.
- For every column of this matrix, substitute the 1D DFT of the corresponding column.
- This results in the 2D DFT of the original matrix f.

The 1D DFT can be calculated by using the FFT algorithm. The total number of arithmetic operations is $O\left(N^{2} \log N\right)$ (instead of the direct calculations, which are of $O\left(N^{4}\right)$!)

