How to consider a function to be ",great" or "small"?

• In the function space *C*[*a*,*b*] (the space of continuous functions defined on the interval [*a*,*b*]), introduce:

 $|| f ||_C \coloneqq \max_{a \le x \le b} |f(x)|$ (maximum norm or C-norm)

• Another possibility:

$$|| f ||_1 \coloneqq \int_a^b |f(x)| dx \quad (L_1 \text{-norm})$$

• A third possibility: $||f||_2 \coloneqq \sqrt{\int_a^b |f(x)|^2} dx$ $(L_2$ -norm)

... and there are a lot of other possibilities ...

In all cases:

- $|| f || \ge 0$, and || f || = 0 if and only if f = 0
- $\| \alpha \cdot f \| = |\alpha| \cdot \| f \|$
- $|| f + g || \le || f || + || g ||$ (,,triangle inequality")

How to consider two functions to be ",near" or ",far" from each other?

Define the **distance** of the functions f and g as: ||f - g||

How to define a sequence of functions to converge to a function?

 $f_n \rightarrow f$, if $|| f_n - f || \rightarrow 0$.

How to consider a vector (i.e. an ordered *n*-tuple) to be "great" or "small"?

• In \mathbf{R}^n (i.e. in the vector space of the ordered, real *n*-tuples), introduce:

$$\|\mathbf{x}\|_{\max} \coloneqq \max_{1 \le j \le n} |x_j| \quad (\mathbf{maximum norm})$$

• Another possibility:

$$\|\mathbf{x}\|_1 \coloneqq \sum_{j=1}^n |x_j|$$
 (1-norm or sum norm)

• A third possibility:

$$\|\mathbf{x}\|_2 \coloneqq \sqrt{\sum_{j=1}^n |x_j|^2}$$
 (2-norm or Euclidean norm)

... and there are a lot of other possibilities ...

In all cases:

- $||\mathbf{x}|| \ge 0$, and $||\mathbf{x}|| = 0$ if and only if $\mathbf{x} = \mathbf{0}$
- $\| \boldsymbol{\alpha} \cdot \mathbf{x} \| = | \boldsymbol{\alpha} | \cdot \| \mathbf{x} \|$
- $||x + y|| \le ||x|| + ||y||$ (,,triangle inequality")

How to consider two vectors to be "near" or "far" from each other?

Define the **distance** of the vectors \mathbf{x} and \mathbf{y} as: $\|\mathbf{x} - \mathbf{y}\|$

How to define a sequence of vectors to converge to a vector?

 $\mathbf{x}_n \rightarrow \mathbf{x}$, if $||\mathbf{x}_n - \mathbf{x}|| \rightarrow 0$.

Vector spaces

A nonempty set X is a (real) **vector space**, if there exists and *addition* between the elements of X, and a multiplication between the elements of \mathbf{R} and X such that the following *vector space axioms* are fulfilled:

For arbitrary $x, y, z \in X$, $\lambda, \mu \in \mathbf{R}$:

- x + y = y + x (the addition is commutative);
- x + (y + z) = (x + y) + z (the addition is associative);
- there exists a zero vector **0** in *X*, such that x + 0 = x is valid for every $x \in X$;
- the addition is *invertible*, i.e. for every vector $x \in X$ there exists another vector $x_{-1} \in X$ such that their sum is the zero vector: $x + x_{-1} = \mathbf{0}$.

•
$$\lambda \cdot (\mu \cdot x) = (\lambda \mu) \cdot x$$

- $\lambda \cdot (x + y) = \lambda \cdot x + \lambda \cdot y$ $(\lambda + \mu) \cdot x = \lambda \cdot x + \mu \cdot x$
- $1 \cdot x = x$

The subset $X_0 \subset X$ is called **subspace**, if X_0 itself is also a vector space with respect to the operations defined in *X*.

Examples:

- The set of the real (complex) numbers **R** (**C**) is a vector space with respect to the ordinary real (complex) addition and multiplication.
- The set of ordered real pairs \mathbf{R}^2 is a vector space with respect to the componentwise operations: $(a,b) + (c,d) := (a+c,b+d), \quad \lambda \cdot (a,b) := (\lambda a, \lambda b)$
- The set of ordered real triples \mathbf{R}^3 is a vector space with respect to the componentwise operations: $(a,b,c) + (u,v,w) \coloneqq (a+u,b+v,c+w), \quad \lambda \cdot (a,b,c) \coloneqq (\lambda a, \lambda b, \lambda c)$
- The set of ordered real *n*-tuples \mathbf{R}^n is a vector space with respect to the componentwise operations:

$$(x_1, x_2, ..., x_n) + (y_1, y_2, ..., y_n) \coloneqq (x_1 + y_1, x_2 + y_2, ..., x_n + y_n)$$

$$\lambda \cdot (x_1, x_2, ..., x_n) \coloneqq (\lambda x_1, \lambda x_2, ..., \lambda x_n)$$

• The set of *n*×*m* matrices $\mathbf{M}_{n\times m}$ is a vector space with respect to the componentwise operations:

$$[a_{kj}] + [b_{kj}] \coloneqq [a_{kj} + b_{kj}]$$
$$\lambda \cdot [a_{kj}] \coloneqq [\lambda a_{kj}]$$

Further examples:

• Let *A* be an arbitrary set. The set of all functions $f : A \to \mathbf{R}$ form a vector space with respect to the ordinary operations of functions:

 $(f+g)(x) \coloneqq f(x) + g(x), \quad (\lambda \cdot f)(x) \coloneqq \lambda \cdot f(x)$

- Let [*a*, *b*] be a bounded, closed interval. The continuous functions defined on [*a*, *b*] form a vector space (denoted by *C*[*a*,*b*]). In fact, this is a subspace of the vector space of all functions defined on [*a*, *b*].
- Let [a, b] be a bounded, closed interval. The functions defined on [a, b] which are k times continuously differentiable form a vector space (denoted by $C^k[a,b]$). This is a subspace of C[a,b]. Moreover, $C^m[a,b]$ is a subspace of $C^k[a,b]$ provided that m > k.

Normed spaces

The vector space X is called **normed space**, if a function from X into **R** is defined (norm, denoted by ||.||) such that the following norm axioms are fulfilled:

- $||x|| \ge 0$
- ||x|| = 0 if and only if x = 0;
- $\| \alpha \cdot x \| = | \alpha | \cdot \| x \|;$
- $||x + y|| \le ||x|| + ||y||$ (triangle inequality).

Examples:

- In **R**, define ||x|| := |x|; then the function ||.|| fulfils the norm axioms.
- In C, define ||z|| := |z|; then the function ||.|| fulfils the norm axioms. (Prove the triangle inequality!)

Examples in finite dimensional space:

In \mathbb{R}^n , define $||x||_{\max} \coloneqq \max(|x_1|,...,|x_n|)$; then the function $||.||_{\max}$ is a norm (maximum norm). The triangle inequality:

$$||x + y||_{\max} = \max_{k} |x_{k} + y_{k}| \le \max_{k} |x_{k}| + \max_{k} |y_{k}| = ||x||_{\max} + ||y||_{\max}$$

Another possibility: $||x||_1 \coloneqq \sum_{k=1}^n |x_k|$ (**1-norm** or **sum norm**). The triangle inequality:

$$||x + y||_{1} = \sum_{k=1}^{n} |x_{k} + y_{k}| \le \sum_{k=1}^{n} |x_{k}| + \sum_{k=1}^{n} |y_{k}| = ||x||_{1} + ||y||_{1}$$

A third possibility: $||x||_2 := \sqrt{\sum_{k=1}^n |x_k|^2}$ (2-norm or Euclidean norm). The triangle inequality:

$$||x + y||_{2}^{2} = \sum_{k=1}^{n} |x_{k} + y_{k}|^{2} = \sum_{k=1}^{n} |x_{k}|^{2} + 2\sum_{k=1}^{n} |x_{k}y_{k}| + \sum_{k=1}^{n} |y_{k}|^{2} \le ||x||_{2}^{2} + 2||x||_{2} \cdot ||y||_{2} + ||y||_{2}^{2},$$

where we have utilized the Cauchy inequality (see later).

Examples in infinite dimensional spaces:

In C[a,b], define $||f||_C := \max_{a \le x \le b} |f(x)|$; then the function $||.||_C$ is a norm (**maximum norm** or **C-norm**). Another possibility: $||f||_1 := \int_a^b |f(x)| \, dx$, which defines a norm, too $(L_1$ -**norm**). A third possibility: $||f||_2 := \sqrt{\int_a^b |f(x|^2 \, dx} (L_2$ -**norm**). The triangle inequality: $||f + g||_2^2 = \int_a^b |f(x) + g(x)|^2 \, dx = \int_a^b |f(x)|^2 \, dx + 2\int_a^b f(x)g(x) \, dx + \int_a^b |g(x)|^2 \, dx \le \le ||f||_2^2 + 2||f||_2 \cdot ||g||_2 + ||g||_2^2$,

where we have utilized the Cauchy-Schwarz-inequality.

Banach spaces

Let X be a normed space. The vector sequence $(x_n) \subset X$ is said to be

- **bounded**, if the sequence $||x_n||$ is bounded, i.e. $||x_n|| \le C$ is valid for some $C \ge 0$;
- converging to the vector $x \in X$, if the sequence $||x_n x||$ tends to 0, i.e. $||x_n x|| \rightarrow 0$;
- Cauchy sequence, if for every $\varepsilon > 0$ there is an index N such that $||x_n x_m|| < \varepsilon$ is valid for all indices $n, m \ge N$.

In arbitrary normed space X: every convergent sequence is bounded, and every convergent sequence is a Cauchy sequence.

The normed space X is complete or Banach space, if every Cauchy sequence is convergent in X.

Examples:

- Every finite dimensional normed space is a Banach space.
- The function space *C*[*a*,*b*] is Banach space with respect to the *C*-norm, but not with respect to the *L*₁-norm.

Euclidean spaces, Hilbert spaces

The vector space *X* is said to be an **Euclidean space**, if a bivariate function is defined on *X* (**inner product** or scalar product, denoted by $\langle .,. \rangle$) such that the following properties are valid:

- $\langle x, x \rangle \ge 0$, and $\langle x, x \rangle = 0$ if and only if x = 0
- $\langle y, x \rangle = \overline{\langle x, y \rangle}$
- $\langle \alpha x, y \rangle = \alpha \cdot \langle x, y \rangle$
- $\langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle$

Every Euclidean space X is a normed space with respect to the norm $||x|| \coloneqq \sqrt{\langle x, x \rangle}$ (the norm induced by the inner product). Moreover, for every $x, y \in X$, the *Cauchy inequality* is valid: $|\langle x, y \rangle| \le ||x|| \cdot ||y||$

The Euclidean space *X* is said to be a **Hilbert space**, if it is complete with respect to the norm induced by the inner product.

Every finite dimensional Euclidean space is also a Hilbert space.

Proof of the Cauchy inequality:

For simplicity, assume that the space is *real*. Then, for arbitrary vectors *x*, *y*:

$$|x + y||^{2} = ||x||^{2} + 2\langle x, y \rangle + ||y||^{2}$$

For arbitrary $x, y \in X$, $\alpha \in \mathbf{R}$, the inequality $||x - \alpha y||^2 \ge 0$ is valid, therefore:

$$||x - \alpha y||^2 = ||x||^2 - 2\alpha \langle x, y \rangle + \alpha^2 ||y||^2 \ge 0$$

Define $\alpha := ||x|| / ||y||$, then we have: $||x||^2 - 2 \frac{||x||}{||y||} \langle x, y \rangle + \frac{||x||^2}{||y||^2} ||y||^2 \ge 0$,

whence $\langle x, y \rangle \le ||x|| \cdot ||y||$. Substituting (-x) instead of $x: -\langle x, y \rangle \le ||x|| \cdot ||y||$ is also valid.

Proof of the triangle inequality (with respect to the norm induced by the inner product): $||x + y||^{2} = ||x||^{2} + 2\langle x, y \rangle + ||y||^{2} \leq \leq ||x||^{2} + 2|\langle x, y \rangle| + ||y||^{2} \leq \leq ||x||^{2} + 2||x|| \cdot ||y|| + ||y||^{2} = (||x|| + ||y||)^{2}$

Examples:

- The space **R** is a Hilbert space with the inner product $\langle x, y \rangle \coloneqq xy$.
- The space **C** is a Hilbert space with the inner product $\langle x, y \rangle \coloneqq x\overline{y}$.
- The space \mathbf{R}^2 is a Hilbert space with the inner product $\langle x, y \rangle \coloneqq x_1 y_1 + x_2 y_2$.

$$\langle (x_1, x_2), (y_1, y_2) \rangle = x_1 y_1 + x_2 y_2 = Rr \cos t \cos t + Rr \sin t \sin t = Rr \cos(t - t)$$

A geometrical illustration:

In short: $\langle x, y \rangle = ||x|| \cdot ||y|| \cdot \cos \theta$, where θ denotes the angle of the vectors *x* and *y*.

Euclidean spaces, examples:

The space \mathbf{R}^n is a Hilbert space with the inner product $\langle x, y \rangle \coloneqq \sum_{k=1}^n x_k y_k$ (which induces the Euclidean norm).

The form of the Cauchy inequality is:
$$\left|\sum_{k=1}^{n} x_k y_k\right| \le \sqrt{\sum_{k=1}^{n} |x_k|^2} \cdot \sqrt{\sum_{k=1}^{n} |y_k|^2}$$
.

Neither the maximum norm nor the sum norm can be induced by inner product.

The space C[a,b] is an Euclidean space with the L_2 -inner product $\langle f,g \rangle \coloneqq \int_a^b f(x)\overline{g(x)} dx$, but it is not complete i.e. it is not a Hilbert space. However, the space $L_2(a,b)$ is a Hilbert space. The form of the Cauchy inequality is: $|\int_a^b f(x)\overline{g(x)} dx| \le \sqrt{\int_a^b |f(x)|^2} dx \cdot \sqrt{\int_a^b |g(x)|^2} dx$

(Cauchy-Schwarz inequality)

Neither the maximum norm nor the L_1 -norm can be induced by inner product.

Linear operators

Let *X*, *Y* be vector spaces. A mapping $A: X \to Y$ is said to be a **linear mapping** or **linear operator**, if it preserves the operations, i.e. A(x + y) = A(x) + A(y) and $A(\lambda \cdot x) = \lambda \cdot A(x)$ are valid for every vectors $x, y \in X$ and scalar λ . If *Y*=**R** or **C**, then the mapping *A* is often called *linear functional*.

Examples:

- $A: \mathbf{R} \to \mathbf{R}, Ax := a \cdot x$ (where $a \in \mathbf{R}$ is an arbitrary constant). Then A is a linear mapping.
- $D: C^1[a,b] \to C[a,b]$, Df := f'. (the operator of the differentiation). Then D is a linear operator.
- Define $I: C[a,b] \to \mathbf{R}$, $If := \int_a^b f(x) dx$. Then *I* is a linear functional.
- Let *I* be a finite, closed interval which contains the zero. Define $\delta : C[I] \to \mathbf{R}$, $\delta f := f(0)$. Then δ is a linear functional. (*Dirac functional or* δ *-functional*)
- Let $A \in \mathbf{M}_{n \times n}$ be arbitrary. The mapping $\mathbf{R}^n \to \mathbf{R}^n$, $x \to Ax$ is a linear mapping of \mathbf{R}^n into itself (denoted by also *A*, if it causes no misunderstanding).

Boundedness and continuity

Let *X*, *Y* be normed spaces and let $A: X \to Y$ be a linear operator.

The linear operator $A: X \to Y$ is said to be **bounded**, if there exists a number $K \ge 0$ such that $||Ax|| \le K \cdot ||x||$ is valid for every $x \in X$. The number *K* is a **bound** of the operator *A*.

A linear operator $A: X \rightarrow Y$ is bounded if and only if it is continuous everywhere.

The least upper bound of *A* is said to be the (operator) norm of *A* (denoted by ||A||).

 $||A|| = \sup\{||Ax||: x \in X, ||x|| \le 1\}$

In short: if the linear operator $A: X \to Y$ is continuous (i.e. bounded), then $||Ax|| \le ||A|| \cdot ||x||$, and ||A|| a least number with this property.

The operator norm depends on the norms of the spaces *X* and *Y* !

If $A: X \to Y$ and $B: Y \to Z$ are bounded then so is the product operator *BA*, and $||BA|| \le ||B|| \cdot ||A||$

Examples for bounded (continuous) linear operators:

- The **identity operator** $I: X \to X$ is bounded, its norm is always 1 (independently of the norm of the space *X*).
- The **zero operator** is bounded, its norm is always 0 (independently of the norm of the space *X*).

If the spaces X, Y are *finite dimensional spaces*, then every linear operator $A: X \rightarrow Y$ is bounded.

- The operator of the differentiation $D: C^{1}[a,b] \rightarrow C[a,b]$, Df := f' is bounded with respect to the norms of these spaces.
- The Dirac functional is bounded with respect to the C(I)-norm, but it is not bounded with respect to the L_1 -norm.

Matrices and finite dimensional linear mappings

Let $A \in \mathbf{M}_{m \times n}$, and define the following mapping:

$$\mathbf{R}^n \to \mathbf{R}^m, \quad x \to Ax$$

Thus we have defined a $\mathbb{R}^n \to \mathbb{R}^m$ linear mapping (denoted by also *A*). For each matrix, there corresponds a linear operator and vice versa.

However, $\mathbf{M}_{m \times n}$ itself is a vector space. Therefore one can define several matrix norms on it.

Matrix norms which are NOT operator norms:

• Sum norm:
$$||A|| := \sum_{k=1}^{n} \sum_{j=1}^{n} |a_{kj}|$$

• Frobenius norm:
$$||A|| \coloneqq \sqrt{\sum_{k=1}^{n} \sum_{j=1}^{n} |a_{kj}|^2}$$

These norms cannot be induced by vector norms (since the norm of the identity matrix differs from 1).

Matrix norms induced by vector norms (operator norms):

If both in \mathbb{R}^{m} and in \mathbb{R}^{n} the maximum norm is given, then the corresponding operator norm is the maximum of the row sums of the absolute values of the matrix entries (row norm):

$$||A||_{\max} = \max_{1 \le k \le m} \sum_{j=1}^{n} |a_{kj}|$$

$$||Ax||_{\max} = \max_{1 \le k \le m} |\sum_{j=1}^{n} a_{kj}x_j| \le \max_{1 \le k \le m} \sum_{j=1}^{n} |a_{kj}| \cdot |x_j| \le (\max_{1 \le k \le m} \sum_{j=1}^{n} |a_{kj}|) \cdot (\max_{1 \le j \le n} |x_j|) = ||A||_{\max} \cdot ||x||_{\max}$$

If both in \mathbb{R}^m and in \mathbb{R}^n the sum norm is given, then the corresponding operator norm is the maximum of the column sums of the absolute values of the matrix entries (column norm):

$$||A||_1 = \max_{1 \le j \le n} \sum_{k=1}^{m} |a_{kj}|$$

$$||Ax||_{1} = \sum_{k=1}^{m} |\sum_{j=1}^{n} a_{kj}x_{j}| \le \sum_{k=1}^{m} \sum_{j=1}^{n} |a_{kj}| \cdot |x_{j}| = \sum_{j=1}^{n} (\sum_{k=1}^{m} |a_{kj}|) \cdot |x_{j}| \le (\max_{1 \le j \le n} \sum_{k=1}^{m} |a_{kj}|) \cdot \sum_{j=1}^{n} |x_{j}| = ||A||_{1} \cdot ||x||_{1}$$

If both in \mathbb{R}^{m} and in \mathbb{R}^{n} the Euclidean norm is given, then the expression of the matrix norm is not simple. However, if A is *self-adjoint and positive definite*, then the operator norm equals to the maximal eigenvalue of the matrix.

Trigonometric Fourier series in $L_2(0,2\pi)$

An arbitrary real function $f \in L_2(0,2\pi)$ can be expressed as a trigonometric Fourier series which is convergent with respect to the $L_2(0,2\pi)$ -norm:

$$f(x) = a_0 + \sum_{k=1}^{\infty} a_k \cos kx + \sum_{k=1}^{\infty} b_k \sin kx,$$

where the coefficients can be calculated as:

$$a_{0} = \frac{1}{2\pi} \int_{0}^{2\pi} f(x) dx,$$

$$a_{k} = \frac{1}{\pi} \int_{0}^{2\pi} f(x) \cos kx dx, \quad b_{k} = \frac{1}{\pi} \int_{0}^{2\pi} f(x) \sin kx dx$$

Complex exponential function

For any
$$z \in \mathbf{C}$$
, define $e^z := \sum_{k=0}^{\infty} \frac{z^k}{k!} = 1 + \frac{z}{1!} + \frac{z^2}{2!} + \frac{z^3}{3!} + \dots$ (exponential series)

The exponential series is absolutely convergent for each $z \in \mathbb{C}$. If z is real, then the sum equals to the value of the ordinary (real) exponential function.

(Euler's formula): For every $t \in \mathbf{R}$: $e^{it} = \cos t + i \sin t$.

Utilizing the well-known Taylor series of the sine and cosine functions:

$$\cos t = 1 - \frac{t^2}{2!} + \frac{t^4}{4!} - \frac{t^6}{6!} + \dots, \qquad \sin t = t - \frac{t^3}{3!} + \frac{t^5}{5!} - \frac{t^7}{7!} + \dots,$$

which implies that:

$$e^{it} = 1 + \frac{it}{1!} + \frac{i^2t^2}{2!} + \frac{i^3t^3}{3!} + \frac{i^4t^4}{4!} + \frac{i^5t^5}{5!} \dots = 1 + \frac{it}{1!} - \frac{t^2}{2!} - \frac{it^3}{3!} + \frac{t^4}{4!} + \frac{it^5}{5!} \dots$$

Separating the real and imaginary parts, we have the theorem.

The Discrete Fourier Transform (DFT)

If $f_0, f_1, f_2, ..., f_{N-1} \in \mathbb{C}$ is a finite sequence, then define its **discrete Fourier transform** as: $\hat{f}_k \coloneqq \sum_{j=0}^{N-1} f_j e^{\frac{2kj\pi}{N}i}$ (k = 0, 1, 2, ..., N-1)

Relationship with the Fourier series: Let *f* be a continuous function defined on the interval

[0,2
$$\pi$$
], and denote by $f_j \coloneqq f(\frac{2j\pi}{N})$. Then the sum $\frac{1}{N} \sum_{j=0}^{N-1} f_j e^{\frac{2kj\pi}{N}i}$ is a Riemann sum of the integral $\frac{1}{2\pi} \int_{0}^{2\pi} f(x) e^{ikx} dx$. Utilizing Euler's formula, we have:

$$\frac{1}{N}\hat{f}_{k} = \frac{1}{N}\sum_{j=0}^{N-1} f_{j}e^{\frac{2kj\pi}{N}i} \approx \frac{1}{2\pi}\int_{0}^{2\pi} f(x)e^{ikx}dx = \frac{1}{2\pi}\int_{0}^{2\pi} f(x)\cos kx\,dx + i\cdot\frac{1}{2\pi}\int_{0}^{2\pi} f(x)\sin kx\,dx = a_{k} + ib_{k}$$

where a_k, b_k are the trigonometric Fourier coefficients.

Number of arithmetic operations: $O(N^2)$, which is too high!

The inverse Discrete Fourier Transform (iDFT)

Every finite sequence can be reconstructed from its DFT, namely:

$$f_k \coloneqq \frac{1}{N} \sum_{j=0}^{N-1} \hat{f}_j e^{-\frac{2kj\pi}{N}i} \qquad (k = 0, 1, 2, ..., N-1)$$

(inverse Discrete Fourier Transform)

For arbitrary k = 0, 1, 2, ..., N - 1, we have:

$$\frac{1}{N}\sum_{j=0}^{N-1}\hat{f}_{j}e^{-\frac{2kj\pi}{N}i} = \frac{1}{N}\sum_{j=0}^{N-1}\sum_{r=0}^{N-1}f_{r}e^{\frac{2rj\pi}{N}i}e^{-\frac{2kj\pi}{N}i} = \sum_{r=0}^{N-1}f_{r}\frac{1}{N}\sum_{j=0}^{N-1}e^{\frac{2(r-k)j\pi}{N}i} = \sum_{r=0}^{N-1}f_{r}\frac{1}{N}\sum_{j=0}^{N-1}z^{j},$$

where $z := e^{\frac{2(r-k)\pi}{N}i}$. If $r = k$, then $z = 1$, therefore $\frac{1}{N}\sum_{j=0}^{N-1}z^{j} = 1$. If r differs from k , then $z = 1$.

differs from 1, and the inner sum is the sum of a finite geometric sequence:

 $\sum_{j=0}^{N-1} z^j = \frac{z^N - 1}{z - 1} = \frac{e^{2(r-k)\pi i} - 1}{z - 1} = \frac{1 - 1}{z - 1} = 0, \text{ which completes the proof.}$

The Fast Fourier Transform (FFT)

Denote by
$$F_N : \mathbb{C}^N \to \mathbb{C}^N$$
 the (linear!) operator of the DFT:
 $(F_N f)_k \coloneqq \sum_{j=0}^{N-1} f_j e^{\frac{2kj\pi}{N}i}$ $(k = 0, 1, ..., N-1)$

Assume that *N* is even: $N \coloneqq 2N_1$. Let us separate the terms with even and odd indices in the expression of $(F_N f)_k$. First, let *k* be a 'small' index: $k = 0, 1, ..., N_1 - 1$:

$$(F_N f)_k = \sum_{l=0}^{N_1 - 1} f_{2l} e^{\frac{2\pi i}{N} k \cdot 2l} + \sum_{l=0}^{N_1 - 1} f_{2l+1} e^{\frac{2\pi i}{N} k \cdot (2l+1)} = \sum_{l=0}^{N_1 - 1} f_{2l} e^{\frac{2\pi i}{N} k \cdot 2l} + e^{\frac{2\pi i}{N} k} \sum_{l=0}^{N_1 - 1} f_{2l+1} e^{\frac{2\pi i}{N} k \cdot 2l} = \sum_{l=0}^{N_1 - 1} f_{2l} e^{\frac{2\pi i}{N_1} kl} + e^{\frac{2\pi i}{N} k} \sum_{l=0}^{N_1 - 1} f_{2l+1} e^{\frac{2\pi i}{N_1} kl}$$

The Fast Fourier Transform (FFT)

Denote by
$$F_N : \mathbb{C}^N \to \mathbb{C}^N$$
 the (linear!) operator of the DFT:
 $(F_N f)_k \coloneqq \sum_{j=0}^{N-1} f_j e^{\frac{2kj\pi}{N}i}$ $(k = 0, 1, ..., N-1)$

Assume that N is even: $N \coloneqq 2N_1$. Let us separate the terms with even and odd indices in the expression of $(F_N f)_k$. Now consider the 'big' indices having the form $N_1 + k$, where $k = 0, 1, ..., N_1 - 1$:

$$(F_N f)_{N_1+k} = \sum_{l=0}^{N_1-1} f_{2l} e^{\frac{2\pi i}{N_1}(N_1+k)l} + e^{\frac{2\pi i}{N}(N_1+k)} \cdot \sum_{l=0}^{N_1-1} f_{2l+1} e^{\frac{2\pi i}{N_1}(N_1+k)l} = \sum_{l=0}^{N_1-1} f_{2l} e^{\frac{2\pi i}{N_1}kl} - e^{\frac{2\pi i}{N}k} \cdot \sum_{l=0}^{N_1-1} f_{2l+1} e^{\frac{2\pi i}{N_1}kl}$$

In both cases, both sums on the right-hand sides are discrete Fourier transforms with smaller vectors. The procedure can recursively be continued, if N is a power of two.

The recursive algorithm of the Fast Fourier Transform

•
$$N_1 \coloneqq N/2$$
, $f^{(0)} \coloneqq (f_0, f_2, ..., f_{2N_1-2})$, $f^{(1)} \coloneqq (f_1, f_3, ..., f_{2N_1-1})$
With recursive invocations, define
• $\hat{f}^{(0)} \coloneqq F_{N_1} f^{(0)}$, $\hat{f}^{(1)} \coloneqq F_{N_1} f^{(1)}$
• $(F_N f)_k \coloneqq \hat{f}_k^{(0)} + e^{\frac{2\pi i k}{N}} \cdot \hat{f}_k^{(1)}$ $(k = 0, 1, ..., N_1 - 1)$
• $(F_N f)_{N_1+k} \coloneqq \hat{f}_k^{(0)} - e^{\frac{2\pi i k}{N}} \cdot \hat{f}_k^{(1)}$ $(k = 0, 1, ..., N_1 - 1)$

where in the case of N = 1, we have $F_1 f \coloneqq f$ (here *f* has one component only). Number of arithmetic operations: $O(N \log N)$, which is much better than $O(N^2)$!

The algorithm can clearly generalized for the computation of the *inverse Discrete Fourier Transform* without difficulty.

Two-dimensional Discrete Fourier Transform

The DFT of a matrix $f \in \mathbf{M}_{N \times N}$ is the matrix $\hat{f} \in \mathbf{M}_{N \times N}$ with the following entries:

$$\hat{f}_{k,j} = \sum_{r=0}^{N-1} \sum_{s=0}^{N-1} f_{r,s} e^{\frac{2\pi i k r}{N}} e^{\frac{2\pi i j s}{N}}$$

Denote by *F* the 1D DFT, then:

$$\hat{f}_{k,j} = \sum_{r=0}^{N-1} \left(\sum_{s=0}^{N-1} f_{r,s} e^{\frac{2\pi i j s}{N}} \right) e^{\frac{2\pi i k r}{N}} = \sum_{r=0}^{N-1} (Ff_{r,.})_j e^{\frac{2\pi i k r}{N}}$$

The algorithm of the 2D DFT:

- For every row of the matrix *f*, substitute the 1D DFT of the corresponding row.
- For every column of this matrix, substitute the 1D DFT of the corresponding column.
- This results in the 2D DFT of the original matrix *f*.

The 1D DFT can be calculated by using the FFT algorithm. The total number of arithmetic operations is $O(N^2 \log N)$ (instead of the direct calculations, which are of $O(N^4)$!)