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Numerical Methods 1. Fundamental concepts and relationships 

 

 

How to consider a function to be „great” or „small”? 

  

 In the function space ],[ baC  (the space of continuous functions defined on the interval 

],[ ba ), introduce:  

 

   
(maximum norm or C-norm) 

 

 Another possibility: 

 
b

a

dxxff |)(|:|||| 1      ( -norm) 

 A third possibility: 
b

a

dxxff 2
2 |)(|:||||        ( 2L -norm) 

… and there are a lot of other possibilities … 

 

  

|)(|max:|||| xff
bxa

C




1L
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In all cases: 

 0|||| f , and 0|||| f  if and only if 0f  

 |||||||||| ff   

 |||||||||||| gfgf     („triangle inequality”) 

 

 

 

How to consider two functions to be „near” or „far” from each other? 

 

Define the distance of the functions  f  and  g as:  |||| gf   

 

 

 

How to define a sequence of functions to converge to a function? 

 

ffn  , if 0||||  ffn . 
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How to consider a vector (i.e. an ordered n-tuple) to be „great” or „small”? 

  

 In n
R  (i.e.  in the vector space of the ordered, real n-tuples), introduce:  

||max:||||
1

max j
nj

x


x
   

(maximum norm) 

 Another possibility: 

 



n

j
jx

1
1 ||:|||| x            (1-norm or sum norm) 

 A third possibility:  





n

j
jx

1

2
2 ||:|||| x        (2-norm or Euclidean norm) 

 

… and there are a lot of other possibilities … 
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In all cases: 

 0|||| x , and 0|||| x  if and only if 0x  

 |||||||||| xx   

 |||||||||||| yxyx     („triangle inequality”) 

 

 

 

How to consider two vectors to be „near” or „far” from each other? 

 

Define the distance of the vectors x and y as:  |||| yx   

 

 

 

How to define a sequence of vectors to converge to a vector? 

 

xx n , if 0||||  xxn . 
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Vector spaces 

 

A nonempty set X is a (real) vector space, if there exists and addition between the elements of 

X, and a multiplication between the elements of R and X such that the following vector space 

axioms are fulfilled: 

 

For arbitrary : 

 

      (the addition is commutative); 

      (the addition is associative); 

 there exists a zero vector 0 in X, such that    is valid for every ; 

 the addition is invertible, i.e. for every vector there exists another vector  

such that their sum is the zero vector:    

  

 xxxyxyx  )()(  

  

 

 

The subset  is called subspace, if  itself is also a vector space with respect to the 

operations defined in X. 

R ,,,, Xzyx

xyyx 

zyxzyx  )()(

xx  0 Xx

Xx Xx 1

.1 0 xx

xx  )()(

xx 1

XX 0 0X
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Examples: 

 The set of the real (complex) numbers R (C) is a vector space with respect to the ordinary 

real (complex) addition and multiplication. 
 

 The set of ordered real pairs  is a vector space with respect to the componentwise 

operations: 

 
 

 The set of ordered real triples  is a vector space with respect to the componentwise 

operations: 
 

 

 The set of ordered real n-tuples  is a vector space with respect to the componentwise 

operations: 

 
 

 The set of   matrices  is a vector space with respect to the componentwise 

operations: 
 

 

2
R

),(:),(,),(:),(),( babadbcadcba 

3
R

),,(:),,(,),,(:),,(),,( cbacbawcvbuawvucba 

n
R

),...,,(:),...,,(

),...,,(:),...,,(),...,,(

2121

22112121

nn

nnnn

xxxxxx

yxyxyxyyyxxx





mn mnM

][:][

][:][][

kjkj

kjkjkjkj

aa

baba




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Further examples: 

 

 Let A be an arbitrary set. The set of all functions   form a vector space with 

respect to the ordinary operations of functions: 
 

 
 

 Let [a, b] be a bounded, closed interval. The continuous functions defined on [a, b] form a 

vector space (denoted by ). In fact, this is a subspace of the vector space of all 

functions defined on  [a, b]. 

 

 Let [a, b] be a bounded, closed interval. The functions defined on [a, b] which are k times 

continuously differentiable form a vector space (denoted by  ). This is a subspace 

of  . Moreover,  is a subspace of  provided that m > k. 

RAf :

)(:))((),()(:))(( xfxfxgxfxgf 

],[ baC

],[ baCk

],[ baC ],[ baCm ],[ baCk



 

8 

 

  

Normed spaces 

 

The vector space  X is called normed space, if a function from X into R is defined (norm, 

denoted by ||.||) such that the following norm axioms are fulfilled: 

 0|||| x  

 0|||| x  if and only if x = 0; 

 |||||||||| xx  ; 

 |||||||||||| yxyx   (triangle inequality). 

 

 

Examples: 

 

 In R, define ||:|||| xx  ; then the function ||.|| fulfils the norm axioms. 

 

 In C, define ||:|||| zz  ; then the function ||.|| fulfils the norm axioms. (Prove the triangle 

inequality!)  
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Examples in finite dimensional space: 

 

In , define ; then the function  is a norm (maximum 

norm). The triangle inequality: 

 

maxmaxmax ||||||||||max||max||max|||| yxyxyxyx k
k

k
k

kk
k

  

 

Another possibility: ||:||||
1

1 k

n

k
xx


  (1-norm or sum norm). The triangle inequality: 

11
111

1 |||||||||||||||||| yxyxyxyx k

n

k
k

n

k
kk

n

k



  

A third possibility: 



n

k
kxx

1

2
2 ||:||||    (2-norm or Euclidean norm). The triangle inequality: 

2
222

2
2

1

2

11

2

1

22
2 ||||||||||||2||||||2|||||||| yyxxyyxxyxyx

n

k
k

n

k
kk

n

k
k

n

k
kk  



, 

 

where we have utilized the Cauchy inequality (see later).

n
R |)||,...,max(|:|||| 1max nxxx  max||.||
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Examples in infinite dimensional spaces: 

 

 

In , define ; then the function ∥. ∥𝐶  is a norm (maximum norm or 

C-norm).  

Another possibility: , which defines a norm, too ( -norm).  

A third possibility: ||𝑓||2 ≔ √∫ |𝑓(𝑥|2 𝑑𝑥
𝑏

𝑎
   ( 2L -norm). The triangle inequality: 

,||||||||||||2||||

|)(|)()(2|)(||)()(|||||

2
222

2
2

2222
2

ggff

dxxgdxxgxfdxxfdxxgxfgf

b

a

b

a

b

a

b

a



 
 

 

where we have utilized the Cauchy-Schwarz-inequality. 

 

],[ baC |)(|max:|||| xff
bxa

C





b

a

dxxff |)(|:|||| 1 1L
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Banach spaces 

 

Let X be a normed space. The vector sequence  is said to be 

 bounded, if the sequence  is bounded, i.e.  is valid for some ; 

 converging to the vector , if the sequence  tends to 0, i.e. ; 

 Cauchy sequence, if for every  there is an index N such that  is valid for 

all indices . 

 

In arbitrary normed space X:  

every convergent sequence is bounded,  

and every convergent sequence is a Cauchy sequence. 

 

The normed space X is complete or Banach space, if every Cauchy sequence is convergent in X. 

 

Examples: 

 Every finite dimensional normed space is a Banach space. 

 The function space  is Banach space with respect to the C-norm, but not with respect 

to the -norm. 

Xxn )(

|||| nx Cxn |||| 0C

Xx |||| xxn  0||||  xxn

0  |||| mn xx

Nmn ,

],[ baC

1L



 

12 

 

Euclidean spaces, Hilbert spaces 

 

The vector space X is said to be an Euclidean space, if a bivariate function is defined on X 

(inner product or scalar product, denoted by  ) such that the following properties are valid: 

 , and  if and only if x = 0 

 yxxy ,,   

  

  

 

Every Euclidean space X is a normed space with respect to the norm   

(the norm induced by the inner product).  

Moreover, for every , the Cauchy inequality is valid:  

|||||||||,| yxyx   

 

The Euclidean space X is said to be a Hilbert space, if it is complete with respect to the norm 

induced by the inner product. 

 

Every finite dimensional Euclidean space is also a Hilbert space. 

.,.

0, xx 0, xx

yxyx ,, 

zyzxzyx ,,, 

xxx ,||:|| 

Xyx ,



 

13 

 

Proof of the Cauchy inequality: 

For simplicity, assume that the space is real. Then, for arbitrary vectors yx, : 
 

222 ||||,2|||||||| yyxxyx   
 

For arbitrary , the inequality  is valid, therefore: 
 

 
 

Define , then we have:  0||||
||||

||||
,

||||

||||
2|||| 2

2

2
2  y

y

x
yx

y

x
x , 

 

whence ||||||||, yxyx  .  Substituting )( x  instead of  x :   ||||||||, yxyx     is also valid. 

 

Proof of the triangle inequality (with respect to the norm induced by the inner product):  

222

22

222

||)||||(||||||||||||||2||||

|||||,|2||||

||||,2||||||||

yxyyxx

yyxx

yyxxyx







 

 

  

R ,, Xyx 0|||| 2 yx

0||||,2|||||||| 2222  yyxxyx

||||/||||: yx
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Examples: 

 

 The space R is a Hilbert space with the inner product . 

 The space C is a Hilbert space with the inner product . 

 The space  is a Hilbert space with the inner product . 

 

)cos(sinsincoscos),(),,( 22112121 tTRrTtRrTtRryxyxyyxx   

 

A geometrical illustration: 

 
 

In short:  cos||||||||, yxyx , where  denotes the angle of the vectors x and y. 

 

xyyx :,

yxyx :,

2
R 2211:, yxyxyx 


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Euclidean spaces, examples: 
 

The space  is a Hilbert space with the inner product  (which induces the 

Euclidean norm). 

The form of the Cauchy inequality is:   



n

k
k

n

k
k

n

k
kk yxyx

1

2

1

2

1

|||| . 

 

Neither the maximum norm nor the sum norm can be induced by inner product. 

 

The space  is an Euclidean space with the -inner product , but it 

is not complete i.e. it is not a Hilbert space. However, the space ),(2 baL  is a Hilbert space. 

The form of the Cauchy inequality is:   

(Cauchy-Schwarz inequality) 
 

Neither the maximum norm nor the 1L -norm can be induced by inner product. 

n
R 



n

k
kk yxyx

1

:,

],[ baC 2L 
b

a

dxxgxfgf )()(:,


b

a

b

a

b

a

dxxgdxxfdxxgxf 22 |)(||)(||)()(|
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Linear operators 

 

Let X, Y  be vector spaces. A mapping  is said to be a linear mapping or linear 

operator, if it preserves the operations, i.e. )()()( yAxAyxA   and )()( xAxA   are 

valid for every vectors Xyx ,  and scalar  . If Y=R or C, then the mapping  A is often called 

linear functional. 

 

Examples: 
 

   (where is an arbitrary constant). Then A is a linear mapping. 
 

 . (the operator of the differentiation). Then D is a linear 

operator. 
 

 Define . Then I is a linear functional. 
 

 Let I be a finite, closed interval which contains the zero. Define . 

Then  is a linear functional. (Dirac functional or -functional) 
 

 Let  be arbitrary. The mapping  is a linear mapping of   
into itself (denoted by also A, if it causes no misunderstanding). 

 

YXA :

xaAxA  :   ,: RR Ra

fDfbaCbaCD  :   ],,[],[: 1

 b
a dxxfIfbaCI )(:   ,],[: R

)0(:   ,][: ffIC  R

 

nnA M Axxnn  ,RR
n

R
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Boundedness and continuity 

 

Let X, Y  be normed spaces and let  be a linear operator.  

 

The linear operator  is said to be bounded, if there exists a number  such that 

|||||||| xKAx   is valid for every . The number K is a bound of the operator A. 

 

 A linear operator  is bounded if and only if it is continuous everywhere.  

 

The least upper bound of A is said to be the (operator) norm of A (denoted by || A ||). 

 

}1||||,||:sup{||||||  xXxAxA  

 

In short: if the linear operator  is continuous (i.e. bounded), then |||||||||||| xAAx  , 

and ||A|| a least number with this property. 

 

The operator norm depends on the norms of the spaces X and Y ! 

 

If YXA :  and ZYB :  are bounded then so is the product operator BA, and
|||||||||||| ABBA   

YXA :

YXA : 0K

Xx

YXA :

YXA :
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Examples for bounded (continuous) linear operators: 

 

 The identity operator  is bounded, its norm is always 1 (independently of the 

norm of the space X).  

 

 The zero operator is bounded, its norm is always 0 (independently of the norm of the 

space X).  

 

If the spaces X, Y are finite dimensional spaces, then every linear operator  is 

bounded. 

 

 The operator of the differentiation  is bounded with respect 

to the norms of these spaces. 

 

 The Dirac functional is bounded with respect to the -norm, but it is not bounded with 

respect to the -norm. 

 

 

XXI :

YXA :

fDfbaCbaCD  :   ],,[],[: 1

)(IC

1L
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Matrices and finite dimensional linear mappings  

 

Let , and define the following mapping:  

 
 

Thus we have defined a  linear mapping (denoted by also A). For each matrix, there 

corresponds a linear operator and vice versa. 
 

However,  itself is a vector space. Therefore one can define several matrix norms on it. 

 

Matrix norms which are NOT operator norms: 
 

 Sum norm: 

 

  

 Frobenius norm:  

 

These norms cannot be induced by vector norms (since the norm of the identity matrix differs 

from 1). 

  

nmA M

Axxmn  ,RR

mn
RR 

nmM

 
 

n

k

n

j
kjaA

1 1

||||:||

 
 

n

k

n

j
kjaA

1 1

2||||:||
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Matrix norms induced by vector norms (operator norms): 

If both in  and in  the maximum norm is given, then the corresponding operator norm is  

the maximum of the row sums of the absolute values of the matrix entries (row norm): 

 

 
 

If both in  and in  the sum norm is given, then the corresponding operator norm is  

the maximum of the column sums of the absolute values of the matrix entries (column norm):  

 

 
 

If both in  and in  the Euclidean norm is given, then the expression of the matrix norm is 

not simple. However, if A is self-adjoint and positive definite, then the operator norm equals to 

the maximal eigenvalue of the matrix. 

m
R

n
R




n

j
kj

mk
aA

11
max ||max||||

maxmax
1 111111

max |||||||||)|max(|)|max(||||max||max|||| xAxaxaxaAx
n

j
j

nj
kj

mk

n

j
jkj

mk

n

j
jkj

mk
  

 

m
R

n
R




m

k
kj

nj
aA

11
1 ||max||||

11
1111 11 11 1

1 ||||||||||)||max(|||)|(|||||||||| xAxaxaxaxaAx
n

j
j

m

k
kj

nj

n

j

m

k
jkj

m

k

n

j
jkj

m

k

n

j
jkj      

   

m
R

n
R
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Trigonometric Fourier series in )2,0(2 L  

 

 

An arbitrary real function )2,0(2 Lf  can be expressed as a trigonometric Fourier series which 

is convergent with respect to the )2,0(2 L -norm: 

 








 11
0 sincos)(

k
k

k
k kxbkxaaxf , 

 

where the coefficients can be calculated as: 

 


















2

0

2

0

2

0
0

.sin)(
1

,cos)(
1

,)(
2

1

dxkxxfbdxkxxfa

dxxfa

kk
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Complex exponential function 

 

For any Cz , define ...
!3!2!1

1
!

:
32

0

 




zzz

k

z
e

k

k
z

   (exponential series) 

 

The exponential series is absolutely convergent for each Cz . If z is real, then the sum equals 

to the value of the ordinary (real) exponential function. 

 

(Euler’s formula): For every Rt : titeit sincos  . 

 

Utilizing the well-known Taylor series of the sine and cosine functions: 

...
!7!5!3

sin...,
!6!4!2

1cos
753642


ttt

tt
ttt

t , 

which implies that: 

...
!5!4!3!2!1

1...
!5!4!3!2!1

1
543255443322 ittittittitititiit

eit   

Separating the real and imaginary parts, we have the theorem. 
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The Discrete Fourier Transform (DFT) 

 

If C1210 ,...,,, Nffff  is a finite sequence, then define its discrete Fourier transform as: 

)1,...,2,1,0(:ˆ
1

0

2

 






Nkeff
N

j

i
N

kj

jk  

 

Relationship with the Fourier series: Let f  be a continuous function defined on the interval  

]2,0[  , and denote by )
2

(:
N

j
ff j


 . Then the sum 






1

0

2
1 N

j

i
N

kj

jef
N

 is a Riemann sum of the 

integral 




2

0

)(
2

1
dxexf ikx

. Utilizing Euler’s formula, we have: 

kk
ikx

N

j

i
N

kj

jk ibadxkxxfidxkxxfdxexfef
N

f
N










 




 2

0

2

0

2

0

1

0

2

sin)(
2

1
cos)(

2

1
)(

2

11ˆ1
 

 

where kk ba ,  are the trigonometric Fourier coefficients. 

 

Number of arithmetic operations:  )( 2NO , which is too high! 
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The inverse Discrete Fourier Transform (iDFT) 

 

Every finite sequence can be reconstructed from its DFT, namely: 

)1,...,2,1,0(ˆ1
:

1

0

2

 







Nkef
N

f
N

j

i
N

kj

jk  

(inverse Discrete Fourier Transform) 

 

For arbitrary 1,...,2,1,0  Nk , we have: 

   



































1

0

1

0

1

0

1

0

)(2
1

0

2
1

0

2
1

0

2
111ˆ1 N

r

N

j

j
r

N

r

N

j

i
N

jkr

r

N

j

i
N

kj
N

r

i
N

rj

r

N

j

i
N

kj

j z
N

fe
N

feef
N

ef
N

, 

where 
i

N

kr

ez





)(2

: . If r = k, then z = 1, therefore  1
1 1

0






N

j

jz
N

. If r differs from k, then z 

differs from 1, and the inner sum is the sum of a finite geometric sequence: 

0
1

11

1

1

1

1 )(21

0






















zz

e

z

z
z

ikrNN

j

j , which completes the proof. 
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The Fast Fourier Transform (FFT) 

 

Denote by NN
NF CC :  the (linear!) operator of the DFT: 
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Assume that N is even: 12: NN  . Let us separate the terms with even and odd indices in the 

expression of  kN fF )( . First, let k be a ‘small’ index: 1,...,1,0 1  Nk  : 
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The Fast Fourier Transform (FFT) 

 

Denote by NN
NF CC :  the (linear!) operator of the DFT: 

)1,...,1,0(:)(
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Assume that N is even: 12: NN  . Let us separate the terms with even and odd indices in the 

expression of  kN fF )( . Now consider the ‘big’ indices having the form kN 1 , where  

1,...,1,0 1  Nk  : 
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In both cases, both sums on the right-hand sides are discrete Fourier transforms with smaller 

vectors. The procedure can recursively be continued, if N is a power of two. 
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The recursive algorithm of the Fast Fourier Transform 

 

 ),...,,(:      ),,...,,(:,2/: 1231
)1(

2220
)0(

1 11   NN ffffffffNN  

With recursive invocations, define 
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where in the case of  N = 1, we have ffF :1   (here f has one component only). 

Number of arithmetic operations:  )log( NNO , which is much better than )( 2NO ! 

 

The algorithm can clearly generalized for the computation of the inverse Discrete Fourier 

Transform without difficulty. 
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Two-dimensional Discrete Fourier Transform 

 

The DFT of a matrix NNf M   is the matrix NNf Mˆ  with the following entries: 
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Denote by F the 1D DFT, then: 
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The algorithm of the 2D DFT: 

 For every row of the matrix f, substitute the 1D DFT of the corresponding row. 

 For every column of this matrix, substitute the 1D DFT of the corresponding column. 

 This results in the 2D DFT of the original matrix f. 

 

The 1D DFT can be calculated by using the FFT algorithm. The total number of arithmetic 

operations is )log( 2 NNO   (instead of the direct calculations, which are of )( 4NO !) 


