Numerical Methods 1. Fundamental concepts and relationships

How to consider a function to be ,,great” or ,,small”?

¢ In the function space C[a,b] (the space of continuous functions defined on the interval
[a,b]), introduce:

| fllc:=max | f(x)| (maximum norm or C-norm)
a<x<b

e Another possibility:
b
I fl=[1f()[dx  (Ly-norm)
a

b

o A third possibility: || f ||,:= \/ﬂ f(x)|2 dx (L,-norm)
a

.. and there are a lot of other possibilities ...




In all cases:
o || f||=0,and || f||=0ifandonlyif f=0
o [fa-fl=]of-]f]

o || f+g|l<||f]l+|lgll (triangle inequality”)

How to consider two functions to be ,,near” or ,.far” from each other?

Define the distance of the functions f and gas: || f —g||

How to define a sequence of functions to converge to a function?

f. > f,if| f, - f]—0.




How to consider a vector (i.e. an ordered n-tuple) to be ,,great” or ,,small”?

In R" (i.e. in the vector space of the ordered, real n-tuples), introduce:

|| X ||pax = 1r<nax | Xj | (maximum norm)
<j<n

Another possibility:

n
| X |ly:= Zl| Xj | (1-norm or sum norm)
J:

A third possibility:

n
I1X|l= || Xj 2 (2-norm or Euclidean norm)
j=1

.. and there are a lot of other possibilities ...




In all cases:
e ||x]|>0,and | x]||=0 ifand only if x=0
o [[o-x]|=]o]-[IX]]

o || X+Yy|[<|Ix||+]ly]l (.triangle inequality”)

Define the distance of the vectors x and y as: || x—y||

Xp =X, if || X, =X || = 0.



Vector spaces

A nonempty set X is a (real) vector space, if there exists and addition between the elements of

X, and a multiplication between the elements of R and X such that the following vector space
axioms are fulfilled:

For arbitrary x,y,ze X, A uneR:

e X+Yy=y+Xx (the addition is commutative);

o X+(y+2z)=(x+Yy)+z (the addition is associative);

there exists a zero vector 0 in X, such that x + 0= x is valid for every xe X ;

the addition is invertible, i.e. for every vector x € X there exists another vector x_; € X
such that their sum is the zero vector: X+ Xx_; =0.

o A-(p-x)=(p)-x

o A-(X+Yy)=A-X+A-Y (A+p) - X=A-X+pun-X

o 1-x=X

The subset Xy < X is called subspace, if X itself is also a vector space with respect to the
operations defined in X.



Examples:
e The set of the real (complex) numbers R (C) is a vector space with respect to the ordinary
real (complex) addition and multiplication.

e The set of ordered real pairs R? is a vector space with respect to the componentwise

operations:
(a,b) +(c,d) =(a+c,b+d), A-(a,b) =(\a,\b)

e The set of ordered real triples R? is a vector space with respect to the componentwise

operations:
(a,b,c) +(u,v,w) =(a+u,b+v,c+w), A-(ab,c)=(a,Ab,Ac)

e The set of ordered real n-tuples R" is a vector space with respect to the componentwise
operations:

(Xll X2’---'Xn) + (Y1’ Yoi Yn) = (Xl T YL X2+ Yo Xp £ Yn)
A (X1, X900y X)) = (AX, AXo vy AXpy )

e The set of nxm matrices M, IS a vector space with respect to the componentwise
operations:

[ay; 1+ [byg ] = [ay; +by]
A-[ag]=[ray]



Further examples:

e Let A be an arbitrary set. The set of all functions f : A— R form a vector space with
respect to the ordinary operations of functions:

(f+9)()=1(x)+9(x), - 1)x)=1-1(x)

e Let[a, b] be a bounded, closed interval. The continuous functions defined on [a, b] form a
vector space (denoted by C[a,b]). In fact, this is a subspace of the vector space of all

functions defined on [a, b].

e Let[a, b] be a bounded, closed interval. The functions defined on [a, b] which are k times
continuously differentiable form a vector space (denoted by Ck[a, b]). This is a subspace

of C[a,b]. Moreover, C"[a,b] is a subspace of Ck[a,b] provided that m > k.



Normed spaces

The vector space X is called normed space, if a function from X into R is defined (norm,
denoted by [|.||) such that the following norm axioms are fulfilled:

e || Xx]|[=0

e || x||=0 ifand only if x = 0;

o [fa-x|[=]al-[[x]l;

o |[x+Vy|<||x||+] Y]l (triangle inequality).

Examples:

e In R, define || x||:=]| x|; then the function ||.|| fulfils the norm axioms.

e In C, define || z||:=| z|; then the function ||.|| fulfils the norm axioms. (Prove the triangle
Inequality!)



Examples in finite dimensional space:

In R", define || X |lmax:= Max(| X |,...,| X, ) ; then the function ||.||max iS @ NOrm (maximum
norm). The triangle inequality:

”X"'yumax:ml?xlxk"‘)’k |Sml?xlxk |+ml?x|yk | =1l Xllmax *+ 11 Y llmax

n
Another possibility: || X|}; = kZ | X | (1-norm or sum norm). The triangle inequality:
=1

n n n
I+ Yl = 20+ yiel< 2 Dl 20yl =lxl 1y T
n
A third possibility: || x||o:= /Z| Xi |2 (2-norm or Euclidean norm). The triangle inequality:
k=1

n n n n
2 2 2 2 2 2
Ix+yllz =2 1%+ Vi |7 = 2% 17+ 22 Xy + 2 i I <l xllz #2112 -1y llz + 1y 12,
k=1 k=1 k=1 k=1

where we have utilized the Cauchy inequality (see later).



Examples in infinite dimensional spaces:

In C[a,b], define || f ||c:= max | f(X)|[; then the function |I. [l Is @ norm (maximum norm or

a<x<b
C-norm).
b
Another possibility: || f [l;:== || f(x)|dx, which defines a norm, too (L;-norm).
a

A third possibility: || ]|, = \/f(f |f (x|? dx (Ly-norm). The triangle inequality:

b b b b
HF+gll5=[1f0)+g()° dx=[] ()7 dx+2[ f()g(x) dx+ [| g(x)|* dx <

<[ fl15+2 fllo-Nall, +lgls .

where we have utilized the Cauchy-Schwarz-inequality.
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Banach spaces

Let X be a normed space. The vector sequence (X,) < X is said to be

e bounded, if the sequence || X, || is bounded, i.e. || X, ||< C is valid for some C >0;
e converging to the vector x € X , if the sequence || X, — X || tends to 0, i.e. || X, — X ||— O;

e Cauchy sequence, if for every € >0 there is an index N such that || X, — X, |[< € is valid for
all indices n,m> N,

In arbitrary normed space X:
every convergent sequence is bounded,
and every convergent sequence is a Cauchy sequence.

The normed space X is complete or Banach space, if every Cauchy sequence is convergent in X.

Examples:
e Every finite dimensional normed space is a Banach space.
e The function space C[a,b] is Banach space with respect to the C-norm, but not with respect
to the Ly-norm.
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Euclidean spaces, Hilbert spaces

The vector space X is said to be an Euclidean space, if a bivariate function is defined on X

(inner product or scalar product, denoted by <> ) such that the following properties are valid:

o (X,X)>0, and< ,x)=0 ifand only if x =0

* (¥.X)=

° <OLX y>
(

X+VY,2)=

X,Y)
(X, Y)
Z)+(Y,2)

=X

Every Euclidean space X is a normed space with respect to the norm || x ||:= \/(X, x)

(the norm induced by the inner product).
Moreover, for every X,y € X, the Cauchy inequality is valid:

ROASNRIRY

The Euclidean space X is said to be a Hilbert space, if it is complete with respect to the norm
induced by the inner product.

Every finite dimensional Euclidean space is also a Hilbert space.
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Proof of the Cauchy inequality:
For simplicity, assume that the space is real. Then, for arbitrary vectors x, y:

I+ y 7 =102 + 206 )+ y I
For arbitrary X,y € X, a € R, the inequality || x — ay ||22 0 is valid, therefore:

I x—ay [I°=] x> —2a(x, y) +a? || y|[*> 0

x|

Define o= x ||/ || v ||, then we have: || x||° - 2m<x, y)+

2
x|

Iy I°

Iyl >0,

whence (x,y) <[ x||-]| y||. Substituting (—x) instead of x: —(x,y)<|/x]||-|[y|l isalso valid.

Proof of the triangle inequality (with respect to the norm induced by the inner product):
Ix+y P =l X7 +2(x, y)+ |y I° <

<|I X 2] (x, y) |+ Y I <
< x I+ 2l x1-Ny T+ 1y 1P = A x D+ 1y 1D
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Examples:

e The space R is a Hilbert space with the inner product (X, y) := xy.
e The space C is a Hilbert space with the inner product (x, y) =Xy

e The space R? is a Hilbert space with the inner product (X,y) = X;y; + X 5.
(X1, %X9),(Y1,Y2)) =% Y1 + XY, =RrcostcosT + RrsintsinT = Rrcos(T —t)
1, X2):\Y1, Y2 1Y1 T X2Y2

A geometrical illustration:

(V1,32)

(x1,x7)

In short: (x,y) =] x||-]| y||-cos®, where 6 denotes the angle of the vectors x and y.

14



Euclidean spaces, examples:

n

The space R" is a Hilbert space with the inner product (X, ¥)= 2 XYk (which induces the
k=1

Euclidean norm).

The form of the Cauchy inequality is:

n n n
D XYk S\/lek & \/Zl Vi I°
k=1 k=1 k=1

Neither the maximum norm nor the sum norm can be induced by inner product.

b -
The space C[a,b] is an Euclidean space with the Ly-inner product ( f,g):= [ f (x)g(x)dx, but it
a

Is not complete i.e. it is not a Hilbert space. However, the space L,(a,b) is a Hilbert space.

b - b b
The form of the Cauchy inequality is: | | f(x)g(x)dx|s\/j| f(x)[? dx-\/ﬂ g(x) | dx
a a a

(Cauchy-Schwarz inequality)
Neither the maximum norm nor the L;-norm can be induced by inner product.

15




Linear operators

Let X, Y be vector spaces. A mapping A: X — Y is said to be a linear mapping or linear
operator, if it preserves the operations, i.e. A(x+Yy) = A(x) + A(y) and A(A-x)=A- A(x) are
valid for every vectors x,y € X and scalar A. If Y=R or C, then the mapping A is often called
linear functional.

Examples:

e A:R—>R, Ax:=a-x (where a e Risan arbitrary constant). Then A is a linear mapping.

D: Cl[a,b] — C[a,b], Df = f'. (the operator of the differentiation). Then D is a linear
operator.

e Define | :C[a,b] > R, If = jgf(x)dx. Then | is a linear functional.

e Let | be a finite, closed interval which contains the zero. Define 6:C[I1]—> R, of = f(0).
Then & is a linear functional. (Dirac functional or &-functional)

e Let Ae M, be arbitrary. The mapping R" - R", x — Ax is a linear mapping of R"
into itself (denoted by also A, if it causes no misunderstanding).
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Boundedness and continuity

Let X, Y be normed spaces and let A: X —Y be a linear operator.

The linear operator A: X —Y is said to be bounded, if there exists a number K >0 such that
|| Ax||< K-|| x|| is valid for every x € X . The number K is a bound of the operator A.

A linear operator A: X —Y is bounded if and only if it is continuous everywhere.

The least upper bound of A is said to be the (operator) norm of A (denoted by || A ||).

| All=supd]| Ax]:x e X, [[ x]I<1}

In short: if the linear operator A: X —Y is continuous (i.e. bounded), then || Ax || <|| All-]| ||,
and ||A|| a least number with this property.

The operator norm depends on the norms of the spaces X and Y !

If A:X —>Y and B:Y — Z are bounded then so is the product operator BA, and
| BAlI<||B|-]| Al
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Examples for bounded (continuous) linear operators:

e The identity operator | : X — X is bounded, its norm is always 1 (independently of the
norm of the space X).

e The zero operator is bounded, its norm is always 0 (independently of the norm of the
space X).

If the spaces X, Y are finite dimensional spaces, then every linear operator A: X —>Y is
bounded.

e The operator of the differentiation D:Cl[a,b] — CJ[a,b], Df = f' is bounded with respect
to the norms of these spaces.

e The Dirac functional is bounded with respect to the C(1)-norm, but it is not bounded with
respect to the Ly-norm.
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Matrices and finite dimensional linear mappings

Let Ae My, and define the following mapping:
R" >R™ x— AXx

Thus we have defined a R" — R™ linear mapping (denoted by also A). For each matrix, there
corresponds a linear operator and vice versa.

However, M., itself is a vector space. Therefore one can define several matrix norms on it.
Matrix norms which are NOT operator norms:

n n
e Sumnorm: | All= 3 ¥ |a|
k=1 j=1

n n
e Frobenius norm: || A||:=\/Z > | &y §
K=1j=1

These norms cannot be induced by vector norms (since the norm of the identity matrix differs
from 1).
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Matrix norms induced by vector norms (operator norms):

If both in R™ and in R" the maximum norm is given, then the corresponding operator norm is
the maximum of the row sums of the absolute values of the matrix entries (row norm):

| Allmax=_ max Zlakjl
1<k< mJ =1

| AX |lmax = max | Zak,X |< max Zlak,| | X |<(max Zlak, )- (maXIX ) =l Allmax - I X lImax
I<k<m  j=1 I<k<m j=1 I<k<m j=1 1<j<n

If both in R™ and in R" the sum norm is given, then the corresponding operator norm is
the maximum of the column sums of the absolute values of the matrix entries (column norm):

| All= max Zlakj|
I<jsnk=1

||AX||1—Z|ZakX |<Z Z|akj| | Xj |_Z(Z|akj D-1%j |<(max Zlakj ) ZIX =1l Ally -1 X Ik

k=1 j=1 =1 j=1 k=1 <j<nk=1

If both in R™ and in R" the Euclidean norm is given, then the expression of the matrix norm is
not simple. However, if A is self-adjoint and positive definite, then the operator norm equals to
the maximal eigenvalue of the matrix.
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Trigonometric Fourier series in L,(0,2m)

An arbitrary real function f € L,(0,2r) can be expressed as a trigonometric Fourier series which
IS convergent with respect to the L, (0,2w)-norm:

f(x)=ay+ %o‘,ak COSkx + %bksinkx,
k=1 k=1

where the coefficients can be calculated as:
1 27
ag =— [ f(x)dx,
27'C 0

121 12m _
a == [f(x)coskxdx, b, == [f(x)sinkxdx.
To To
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Complex exponential function

7 2 3

o0 k
For any z € C, define e Z ? = i §+23—|+... (exponential series)

The exponential series is absolutely convergent for each z € C. If z is real, then the sum equals
to the value of the ordinary (real) exponential function.

(Euler’s formula): For every t e R: e = cost +isint.

Utilizing the well-known Taylor series of the sine and cosine functions:
t?2 t* t° 3 0 tf
cost=1-—+———+..,, sint=t——+———+...,
2 41 6 3 5 7
which implies that:
Lt it? % it e it t2 ittt it°
+ + + =14 +—4+—..
]_' 2! 3! 4 bl n 20 3 4 5
Separating the real and imaginary parts, we have the theorem.
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The Discrete Fourier Transform (DFT)

If fq, f1, fo,..., fy_1 € C is a finite sequence, then define its discrete Fourier transform as:
2kjn

z fie N (k=0412,...,N 1)

Relationship with the Fourier series: Let f be a continuous function defined on the interval

2kjn
N -1
[0,2n], and denote by f; := f(zjn) Then the sum % > fie N isaRiemann sum of the
j=0

1 27 ]
integral o I f (X)e'kxdx. Utilizing Euler’s formula, we have:

T

0

l 1 -1 Zkl 27[
N N Z —jf(x)e'kxdx_—jf(x)coskxdx+| —jf(x)smkxdx ay +iby

where &, b, are the trigonometric Fourier coefficients.

Number of arithmetic operations: O(N 2), which is too high!
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The inverse Discrete Fourier Transform (iDFT)

Every finite sequence can be reconstructed from its DFT, namely:

1 N1 _@,

- Z (k=012,...,N ~1)

(mverse Discrete Fourier Transform)

For arbitrary k =0,1,2,...,N —1, we have:

P P LTS N TN 7 LT N R Vi Gl O LT N R Ve

— fie N ——ZZfeNe No=>»f,=>e N = fr—ZzJ,

N'j=o N jZorzo r=0 j=0 =0 N j=o
2(|’—k)7tI e

where z:=e N Afr=Kk, thenz =1, therefore — Z z) =1. If r differs from k, then z

j=0

differs from 1, and the inner sum is the sum of a finite geometric sequence:

N-1 N 2(r=k)mi .

>zl = 2 -1 ¢ 1_1-1_ 0, which completes the proof.

=0 z-1 z-1 z-1
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The Fast Fourier Transform (FFT)

Denote by Fy :cN >N the (linear!) operator of the DFT:

N1 2kjn
(Fuf)e= fie N (k=01..,N-1)
j=0

Assume that N is even: N :=2N;. Let us separate the terms with even and odd indices in the
expression of (Fy f),. First, let k be a ‘small’ index: k =01,...,N; -1

N -1 szk ol Ni-1 @k 21+1) Ni-1 ZN’“k 2l 2|i|uk N1 ZNT“k 2l
(Fn k= 2. fae + 2 fyqe N = > e +e N> fyqe
N1 ilmkl 2 Ny -1 ilmkl
= fre™ +eN > fy et
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The Fast Fourier Transform (FFT)

Denote by Fy :cN >N the (linear!) operator of the DFT:

N-1 2N
(Fuf)e=> fie N (k=01..,N-1)
j=0

Assume that N is even: N :=2N;. Let us separate the terms with even and odd indices in the
expression of (Fy f),. Now consider the ‘big’ indices having the form N; +k, where
k=01...,N;-1:

Ny -1 ilm(N1+k)| 2m N ak) Np-l ilm(N1+k)|
(FNf)N1+k: Z foe™ +e N ' Z fo €t =
N1 ij’“m 2mi, Nyl 2m
=2 fye™ —eN > fyqem™

1-0 1-0

In both cases, both sums on the right-hand sides are discrete Fourier transforms with smaller
vectors. The procedure can recursively be continued, if N is a power of two.
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The recursive algorithm of the Fast Fourier Transform

o N;=N/2, fO:=(fy, 1., fang—2), £ 0= (1, f5,... fon, 1)

With recursive invocations, define

o fO Fn, £ FO Fu, f@

27k
Fyf =1Q+e N £fO  (k=01..,N; -1
. N k k k 1
(Fn fIngk = 0 —e N - £8 (k=01,....Ny -1)

where in the case of N =1, we have F;f := f (here f has one component only).
Number of arithmetic operations: O(N log N), which is much better than O(N 2)!

The algorithm can clearly generalized for the computation of the inverse Discrete Fourier
Transform without difficulty.
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Two-dimensional Discrete Fourier Transform

The DFT of amatrix f e My, is the matrix f € M,y with the following entries:

1N -1 2mikr  2mijs
:E: 2 fr s€ N'e N
r=0s=0
Denote by F the 1D DFT, then:
N1 N—1 2Tijs kar 1 2 mikr
:Z Zfr,seN Z(Ff)eN

r=0{ s=0

The algorithm of the 2D DFT:

e For every row of the matrix f, substitute the 1D DFT of the corresponding row.
e For every column of this matrix, substitute the 1D DFT of the corresponding column.
e This results in the 2D DFT of the original matrix f.

The 1D DFT can be calculated by using the FFT algorithm. The total number of arithmetic
operations is O(N 2 log N) (instead of the direct calculations, which are of O(N 4) )
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