## Numerical Methods 2. Solution of nonlinear equations

## Solution by interval halving (bisection method)

Let $f:[a, b] \rightarrow \mathbf{R}$ be continuous, assume that $f(a)<0, \quad f(b)>0$. Let us look for a solution of the equation

$$
f(x)=0
$$

in the interval $[a, b]$.
Bolzano's theorem: If $f$ is continuous on the finite, closed interval $[a, b]$, and the signs of

$$
f(a) \text { and } f(b) \text { are different, e.g. } f(a)<0, \quad f(b)>0,
$$ then $f$ has (at least one) zero in this interval.

Let us systematically halve the interval $[a, b]$ by taking the subinterval which has the property that the values of $f$ at the endpoints of the subinterval have different signs. Denote by $x_{n}$ the centre of the subinterval obtained in the $n$th step. Then this sequence converges to a zero (one of the zeroes) of the above equation. The speed of convergence is of a geometric sequence with quotient $1 / 2$.

## Solution by interval halving (bisection method)

The algorithm is illustrated by the following figure:


Error estimation: Defining $x_{0}:=\frac{a+b}{2}$, it is obvious that:

$$
\left|x_{n}-x^{*}\right| \leq \frac{b-a}{2^{n}}
$$

## The method based on Banach's fixed point theorem

Let $X$ be a Banach space, let $f: X \rightarrow X$ be a mapping, and look for a vector $x$ such that

$$
x=f(x)
$$

(a fixed point of the mapping $f$ ).
Banach's fixed point thorem: Let $X$ be a Banach space, let $f: X \rightarrow X$ be a contraction in $X$, i.e. assume that there exists a number $0 \leq q<1$ such that $\|f(x)-f(y)\| \leq q \cdot\|x-y\|$ is valid for every $x, y \in X$. Then $f$ has an unique fixed point $x \in X$, and this is the limit of the following, recursively defined iteration sequence:

$$
x_{0} \in X, \quad x_{n+1}:=f\left(x_{n}\right) \quad(n=0,1,2, \ldots)
$$

In particular, if $f: \mathbf{R} \rightarrow \mathbf{R}$ a function for which $\max \left|f^{\prime}(x)\right|<1$ is satisfied, then $f$ is a contraction, since Lagrange's mean value theorem implies that

$$
|f(x)-f(y)|=\left|f^{\prime}(\xi)\right| \cdot|x-y| \leq\left(\max \left|f^{\prime}\right|\right) \cdot|x-y|
$$

Proof of the fixed point theorem: The distance of two consecutive terms:

$$
\begin{gathered}
\left\|x_{n+1}-x_{n}\right\|=\left\|f\left(x_{n}\right)-f\left(x_{n-1}\right)\right\| \leq q\left\|x_{n}-x_{n-1}\right\|=q\left\|f\left(x_{n-1}\right)-f\left(x_{n-2}\right)\right\| \leq q^{2}\left\|x_{n-1}-x_{n-2}\right\| \leq \\
\ldots \leq q^{n}\left\|x_{1}-x_{0}\right\|
\end{gathered}
$$

Utilizing this estimation, we show that $\left(x_{n}\right)$ is a Cauchy sequence in $X$ :

$$
\begin{gathered}
\left\|x_{n+k}-x_{n}\right\|=\left\|x_{n+k}-x_{n+k-1}+x_{n+k-1}-x_{n+k-2}+\ldots+x_{n+1}-x_{n}\right\| \leq \\
\leq\left\|x_{n+k}-x_{n+k-1}\right\|+\left\|x_{n+k-1}-x_{n+k-2}\right\|+\ldots+\left\|x_{n+1}-x_{n}\right\| \leq \\
\quad \leq\left(q^{n+k-1}+q^{n+k-2}+\ldots+q^{n}\right) \cdot\left\|x_{1}-x_{0}\right\| \leq \\
\leq\left(q^{n}+q^{n+1}+q^{n+2}+\ldots\right) \cdot\left\|x_{1}-x_{0}\right\|=\frac{q^{n}}{1-q} \cdot\left\|x_{1}-x_{0}\right\| \rightarrow 0
\end{gathered}
$$

(when $n \rightarrow+\infty$.) Therefore the sequence is convergent, $x_{n} \rightarrow x \in X$. We show that $x$ is a fixed point of $f$. By definition: $x_{n+1}=f\left(x_{n}\right)$ The left hand side obviously tends to $x$. The right-hand side tends to $f(x)$, since $f$ is continuous. This implies that $x=f(x)$.
Finally, prove the uniqueness of the fixed point. If $x, y$ were two different fixed points, then

$$
0<\|x-y\|=\|f(x)-f(y)\| \leq q \cdot\|x-y\|<\|x-y\|
$$

would be valid, which is impossible.

## Iteration based on Banach's fixed point theorem, examples:

1. Solve the equation $x=\frac{1}{2} \cos x$.

The function defined by $f(x):=\frac{1}{2} \cos x$ is a contraction in $\mathbf{R}$, since $\left|f^{\prime}(x)\right|=\frac{1}{2}|\sin x| \leq \frac{1}{2}$. Thus, an unique fixed point exists, and e.g. the following sequence converges to this: $x_{0}:=0, x_{n+1}:=\frac{1}{2} \cos x_{n}$. The first terms of the sequence are as follows (with four decimal digits): $0.0000,0.5000,0.4387,0.4526,0.4496,0.4502,0.4501,0.4501,0.4501, \ldots$
2. Let $B \in \mathbf{M}_{N \times N}, g \in \mathbf{R}^{N}$ be given, and solve the linear system of equations $x=B x+g$. If $\|B\|<1$ (with respect to an arbitrary matrix norm induced by a vector norm), then the mapping $f(x):=B x+g$ is a contraction, since

$$
\|f(x)-f(y)\|=\|B x+g-B y-g\| \leq\|B\| \cdot\|x-y\|
$$

In this case, there exists a unique fixed point, and the vector sequence defined by $x_{0}:=\mathbf{0}$, $x_{n+1}:=B x_{n}+g$ converges to the fixed point.

## Newton's method for univariate functions

Let $f:(a, b) \rightarrow \mathbf{R}$ be a given function. Solve the equation

$$
f(x)=0
$$

in the interval $(a, b)$.

Newton's method: If $x_{n}$ is an approximate solution, then define an improved approximation to be the zero of the tangent line at $x_{n}$. The equation of the tangent line is:
$y=f\left(x_{n}\right)+f^{\prime}\left(x_{n}\right) \cdot\left(x-x_{n}\right)$, whence:

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)} \quad(n=0,1,2, \ldots) \quad\left(x_{0} \in(a, b): \text { initial approximation }\right)
$$

## Newton's method for univariate functions

Illustration of then method ( $x^{*}$ denotes the exact solution):


If $f$ is twice continuously differentiable, $f$ has a zero in $(a, b)$, and $f^{\prime}\left(x^{*}\right) \neq 0$ is valid, then Newton's iteration quadratically converges to $x^{*}$ for arbitrary initial approximation $x_{0}$ which
is sufficiently close to the exact solution $x^{*}$, i.e. for a proper positive constant $C>0$ :

$$
\left|x_{n+1}-x^{*}\right| \leq C \cdot\left|x_{n}-x^{*}\right|^{2}
$$

Proof: We utilize Lagrange's mean value theorem twice:

$$
\begin{aligned}
x_{n+1} & -x^{*}=x_{n}-x^{*}-\frac{f\left(x_{n}\right)-f\left(x^{*}\right)}{f^{\prime}\left(x_{n}\right)}=x_{n}-x^{*}-\frac{f^{\prime}(t)\left(x_{n}-x^{*}\right)}{f^{\prime}\left(x_{n}\right)}= \\
& =\frac{f^{\prime}\left(x_{n}\right)-f^{\prime}(t)}{f^{\prime}\left(x_{n}\right)} \cdot\left(x_{n}-x^{*}\right)=\frac{f^{\prime \prime}(s)}{f^{\prime}\left(x_{n}\right)} \cdot\left(x_{n}-t\right) \cdot\left(x_{n}-x^{*}\right)
\end{aligned}
$$

Since $f^{\prime}\left(x^{*}\right) \neq 0$, the derivative function differs from zero in a closed neighbourhood of $x^{*}$. In this neighbourhood:

$$
\left|x_{n+1}-x^{*}\right| \leq \frac{\max \left|f^{\prime \prime}\right|}{\min \left|f^{\prime}\right|} \cdot\left|x_{n}-t\right| \cdot\left|x_{n}-x^{*}\right| \leq \frac{\max \left|f^{\prime \prime}\right|}{\min \left|f^{\prime}\right|} \cdot\left|x_{n}-x^{*}\right|^{2}=C \cdot\left|x_{n}-x^{*}\right|^{2}
$$

## Newton's method, example:

Let $A$ be a fixed positive number, and define: $f(x):=x^{2}-A . \quad\left(\Rightarrow f^{\prime}(x)=2 x\right)$
Now the unique positive solution of the equation

$$
f(x)=0
$$

is $x=\sqrt{A}$.
Starting form an arbitrary initial approximation $x_{0}>0$ (e.g. $x_{0}:=A$ ), we arrive at the following recursion:

$$
x_{n+1}:=x_{n}-\frac{x_{n}^{2}-A}{2 x_{n}}=\frac{1}{2} \cdot\left(x_{n}+\frac{A}{x_{n}}\right)
$$

The sequence converges to $\sqrt{A}$ extremely rapidly, requiring only additions and divisions.
Remark: Newton's method can be applied to the computation of any root in a similar way.

## Some variants of Newton' method

The main difficulty: the computation of the derivatives.
The secant method: Here $f^{\prime}\left(x_{n}\right) \approx \frac{f\left(x_{n}\right)-f\left(x_{n-1}\right)}{x_{n}-x_{n-1}}$, which results in the recursion:

$$
x_{n+1}:=x_{n}-\frac{\left(x_{n}-x_{n-1}\right) \cdot f\left(x_{n}\right)}{f\left(x_{n}\right)-f\left(x_{n-1}\right)}
$$

If $f$ is twice continuously differentiable, $f$ has a root $x^{*}$ in $(a, b)$, and $f^{\prime}\left(x^{*}\right) \neq 0$, then the secant method defines an iteration which converges to $x^{*}$ provided that the initial approximations $x_{0}, x_{1}$ are sufficiently close to the exact solution.
The speed of convergence is at least that of a geometrical sequence, i.e.

$$
\begin{aligned}
& \qquad\left|x_{n}-x^{*}\right| \leq C \cdot q^{n} \\
& \text { for some } C>0,0<q<1
\end{aligned}
$$

Remark: In fact, the speed of convergence is faster (superlinear convergence).

## Some variants of Newton' method

## Steffensen's method:

Assume that the function $f: \mathbf{R} \rightarrow \mathbf{R}$ is twice continuously differentiable and has a unique root $x^{*}$. Assume also that $f^{\prime}\left(x^{*}\right) \neq 0$. Then for any initial approximation $x_{0}$ which is sufficiently close to $x^{*}$, the following recursive sequence is quadratically converges to $x^{*}$ :

$$
x_{n+1}:=x_{n}-\frac{f\left(x_{n}\right)^{2}}{f\left(x_{n}+f\left(x_{n}\right)\right)-f\left(x_{n}\right)} \quad(n=0,1,2, \ldots)
$$

Remark: Both the secant method and Steffensen's method require computing the values of the function $f$ but not of the derivatives.

Proof of the convergence of Steffensen's method: Utilizing Lagrange's mean value theorem:

$$
f\left(x_{n}+f\left(x_{n}\right)\right)-f\left(x_{n}\right)=f^{\prime}(t) \cdot\left(x_{n}+f\left(x_{n}\right)-x_{n}\right)=f^{\prime}(t) \cdot f\left(x_{n}\right)
$$

therefore

$$
\begin{gathered}
x_{n+1}-x^{*}=x_{n}-x^{*}-\frac{f\left(x_{n}\right)}{f^{\prime}(t)}=x_{n}-x^{*}-\frac{f\left(x_{n}\right)-f\left(x^{*}\right)}{f^{\prime}(t)}=x_{n}-x^{*}-\frac{f^{\prime}(s)}{f^{\prime}(t)}\left(x_{n}-x^{*}\right)= \\
=\frac{f^{\prime}(t)-f^{\prime}(s)}{f^{\prime}(t)} \cdot\left(x_{n}-x^{*}\right)=\frac{f^{\prime \prime}(w)}{f^{\prime}(t)} \cdot(t-s) \cdot\left(x_{n}-x^{*}\right)
\end{gathered}
$$

Since $f^{\prime}\left(x^{*}\right) \neq 0$, therefore the derivative function differs from a closed neighbourhood of $x^{*}$, and here:
$\left|x_{n+1}-x^{*}\right| \leq \frac{\max \left|f^{\prime \prime}\right|}{\min \left|f^{\prime}\right|} \cdot|t-s| \cdot\left|x_{n}-x^{*}\right| \leq \frac{\max \left|f^{\prime \prime}\right|}{\min \left|f^{\prime}\right|} \cdot\left|x_{n}-x^{*}\right|^{2}=C \cdot\left|x_{n}-x^{*}\right|^{2}$

## Differentiation of functions mapping between Banach spaces

Let $X, Y$ be Banach spaces. The mapping $F: X \rightarrow Y$ is said to be differentiable at the point $x \in X$ and its derivative is the bounded linear operator $A: X \rightarrow Y$, if for any vector $h$ chosen from a proper neighbourhood of $\mathbf{0}$, the following equality is valid:

$$
F(x+h)=F(x)+A h+o(h)
$$

where $o(h)$ is an expression such that $\frac{o(h)}{\|h\|} \rightarrow \mathbf{0}(h \rightarrow \mathbf{0})$.
Notations: $F^{\prime}(x)$ or $D F(x)$.
Example: $F: \mathbf{R}^{N} \rightarrow \mathbf{R}, F(x):=\langle A x, x\rangle$ (where $A \in \mathbf{M}_{N \times N}$ is a self-adjoint matrix), then:

$$
F(x+h)=\langle A(x+h), x+h\rangle=\langle A x, x\rangle+2\langle A x, h\rangle+\langle A h, h\rangle=F(x)+\langle 2 A x, h\rangle+O\left(h^{2}\right)
$$

Thus, $F^{\prime}(x)=2 A x \in \mathbf{R}^{N}$.

## Generalized Newton method

Newton's method for the equation $F(x)=0$ :

$$
x_{n+1}=x_{n}-\left(D F\left(x_{n}\right)\right)^{-1} F\left(x_{n}\right) \quad(n=0,1,2, \ldots)
$$

This means that: $\quad x_{n+1}=x_{n}-w_{n} \quad(n=0,1,2, \ldots)$
where the correction term $w_{n}$ is the solution of the following linear equation:

$$
D F\left(x_{n}\right) w_{n}=F\left(x_{n}\right)
$$

If $F$ is twice continuously differentiable, $F$ has a root in $X$, and $D F\left(x^{*}\right)$ is regular (i.e. invertible with a bounded inverse), then Newton's method quadratically converges to the exact solution $x^{*}$ provided that the initial approximation $x_{0}$ is sufficiently close to $x^{*}$. That is, the following estimation is valid (with a proper constant $C>0$ ):

$$
\left\|x_{n+1}-x^{*}\right\| \leq C \cdot\left\|x_{n}-x^{*}\right\|^{2}
$$

Remark: Newton's method converts a nonlinear problem to a sequence of linear ones.

## Generalized Newton method, an example

Inversion of a matrix. Let $A \in \mathbf{M}_{N \times N}$ be a regular matrix. For an arbitrary regular matrix $X \in \mathbf{M}_{N \times N}$, define the following operator:

$$
F(X):=X^{-1}-A
$$

Then $F: \mathbf{M}_{N \times N} \rightarrow \mathbf{M}_{N \times N}$, and the unique solution of the equation $F(X)=0$ is: $X=A^{-1}$.
Let us apply Newton's method to the matrix equation. First, calculate the derivative of $F$ :

$$
F(X+H)=(X+H)^{-1}-A=\left(X\left(I+X^{-1} H\right)\right)^{-1}-A=\left(I+X^{-1} H\right)^{-1} X^{-1}-A
$$

If the norm of the matrix $H$ is sufficiently small, then $\left\|X^{-1} H\right\| \leq\left\|X^{-1}\right\| \cdot\|H\|<1$.
Utilizing the expression $(I-B)^{-1}=I+B+B^{2}+B^{3}+B^{4}+\ldots$ (which is valid, if $\|B\|<1$, and implies that $(I-B)^{-1}=I-B+O\left(\left.| | B\right|^{2}\right)$ :

$$
\begin{aligned}
& F(X+H)=\left(I+X^{-1} H\right)^{-1} X^{-1}-A=\left(I-X^{-1} H+o(H)\right) X^{-1}-A= \\
& =X^{-1}-X^{-1} H X^{-1}+o(H)-A=F(X)-X^{-1} H X^{-1}+o(H)
\end{aligned}
$$

whence

$$
D F(X) H=-X^{-1} H X^{-1} \quad \Rightarrow \quad D F(X)^{-1} W=-X W X
$$

## Generalized Newton method, an example

Thus, the algorithm of Newton's method is as follows:

$$
\begin{gathered}
X_{n+1}:=X_{n}-\left(D F\left(x_{n}\right)\right)^{-1}\left(X_{n}^{-1}-A\right)=X_{n}+X_{n}\left(X_{n}^{-1}-A\right) X_{n}= \\
=X_{n}\left(2 I-A X_{n}\right)
\end{gathered}
$$

For the error of the approximation: $\left\|A^{-1}-X_{n}\right\|=\left\|A^{-1}\left(I-A X_{n}\right)\right\| \leq\left\|A^{-1}\right\| \cdot\left\|I-A X_{n}\right\|$. Observe that $\left\|I-A X_{n}\right\|$ converges to 0 very rapidly (provided that the initial approximation was good enough), since:

$$
I-A X_{n+1}=I-A X_{n}\left(2 I-A X_{n}\right)=I-2 A X_{n}+A X_{n} A X_{n}=\left(I-A X_{n}\right)^{2}
$$

whence

$$
\left\|I-A X_{n+1}\right\| \leq\left\|I-A X_{n}\right\|^{2}
$$

