Numerical Methods 2. Solution of nonlinear equations

Solution by interval halving (bisection method)

Let f :[a,b] - R be continuous, assume that f(a) <0, f(b)>0. Letus look for a solution of
the equation

f(x)=0

in the interval [a, b].

Bolzano’s theorem: If f is continuous on the finite, closed interval [a,b], and the signs of
f (a) and f (b) are different, e.g. f(a)<0, f(b)>0,
then f has (at least one) zero in this interval.

Let us systematically halve the interval [a, b] by taking the subinterval which has the property
that the values of f at the endpoints of the subinterval have different signs. Denote by x,, the

centre of the subinterval obtained in the nth step. Then this sequence converges to a zero (one of
the zeroes) of the above equation. The speed of convergence is of a geometric sequence with
quotient 5.




Solution by interval halving (bisection method)

The algorithm is illustrated by the following figure:

Error estimation: Defining Xg :=a7b, it is obvious that:
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The method based on Banach’s fixed point theorem
Let X be a Banach space, let f : X — X be a mapping, and look for a vector x such that
X = f(X)

(a fixed point of the mapping f).

Banach’s fixed point thorem: Let X be a Banach space, let f : X — X be a contraction in X,
I.e. assume that there exists a number 0 < g < 1suchthat| f(x)—f(y)||<q-||x=y| is valid

for every x,y € X. Then f has an unique fixed point x € X, and this is the limit of the
following, recursively defined iteration sequence:

Xo €EX, xpyq = f(x,) (n=012,..)

In particular, if f:R — R afunction for which max| f'(x)|<1 is satisfied, then f isa
contraction, since Lagrange’s mean value theorem implies that

[ TO)=TW =T - | x=y[<(max]| T -|x=y].




Proof of the fixed point theorem: The distance of two consecutive terms:
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Utilizing this estimation, we show that (X, ) is a Cauchy sequence in X:
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(when n — +o00.) Therefore the sequence is convergent, x, — X € X . We show that x is a fixed
point of f. By definition: x,.q = f(X,) The left hand side obviously tends to x. The right-hand
side tends to f(x), since fis continuous. This implies that x = f (x).

Finally, prove the uniqueness of the fixed point. If X, y were two different fixed points, then
O<fIx=yll =l TG)=TW I <alx=yl<lIx=y]
would be valid, which is impossible.



Iteration based on Banach’s fixed point theorem, examples:

1. Solve the equation |x = %cosx.

The function defined by f(x):= %cosx IS a contraction in R, since | f'(x) |= % | sin X | s%.
Thus, an unique fixed point exists, and e.g. the following sequence converges to this:

Xo =0, X411 = %cos Xp - The first terms of the sequence are as follows (with four decimal
digits): 0.0000, 0.5000, 0.4387, 0.4526, 0.4496, 0.4502, 0.4501, 0.4501, 0.4501, ...

2.Let BeMy N, O € RN be given, and solve the linear system of equations |x =Bx+g.

If || B|| <1 (with respect to an arbitrary matrix norm induced by a vector norm), then the
mapping f (X):=Bx+g is a contraction, since

I TO)— T I=lBx+g-By—gll<[[B]-| x=yl

In this case, there exists a unique fixed point, and the vector sequence defined by X =0,
Xn41 = BX,, + g converges to the fixed point.



Newton’s method for univariate functions

Let f:(a,b) > R be a given function. Solve the equation

f(x)=0

in the interval (a,b).

Newton’s method: If x, is an approximate solution, then define an improved approximation to
be the zero of the tangent line at x,,. The equation of the tangent line is:

y=f(xy)+ f'(Xy) - (X=X,), whence:

f (%)

Xn11 = X —m (n=012,...) (X € (a,b): initial approximation)
n




Newton’s method for univariate functions

Illustration of then method (x* denotes the exact solution):

If f is twice continuously differentiable, f has a zero in (a,b), and f’(x*) = 0 1s valid, then
Newton’s iteration quadratically converges to x for arbitrary initial approximation xo which
Is sufficiently close to the exact solution X', i.e. fora proper positive constant C >0
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Proof: We utilize Lagrange’s mean value theorem twice:

e fO) =) e PO —X)

b ! (%) ! F(xy)
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Since f’(x*) # 0, the derivative function differs from zero in a closed neighbourhood of X . In
this neighbourhood:

max | f"| *
.—,’|Xn_t|'|xn_x |S - '
min | f'| min | f'|

max | f”
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Newton’s method, example:

Let A be a fixed positive number, and define: f(x) = x> — A. (= f'(X)=2x)
Now the unique positive solution of the equation

f(x)=0
is x =JA.

Starting form an arbitrary initial approximation x, >0 (e.g. Xy = A), we arrive at the following
recursion:

Xpq = X Xn-A_L X+
n+l - n 2Xn 2 n X,

The sequence converges to ~/A extremely rapidly, requiring only additions and divisions.

Remark: Newton’s method can be applied to the computation of any root in a similar way.



Some variants of Newton’ method

The main difficulty: the computation of the derivatives.

The secant method: Here f'(x,)= , which results in the recursion:

X1 = Xy — (Xn B Xn—l)' f (Xn)
f (Xn) —f (Xn—l)

If f is twice continuously differentiable, f has a root X in (a,b), and f’(x*) # 0, then the secant

method defines an iteration which converges to X provided that the initial approximations
Xg, X1 are sufficiently close to the exact solution.

The speed of convergence is at least that of a geometrical sequence, i.e.
|Xn —x*|gC.qn

forsome C >0, 0<g<1

Remark: In fact, the speed of convergence is faster (superlinear convergence).
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Some variants of Newton’ method

Steffensen’s method:

Assume that the function f :R — R Is twice continuously differentiable and has a unique root
X . Assume also that f’(x*) # 0. Then for any initial approximation Xy which is sufficiently
closeto X, the following recursive sequence is quadratically converges to X :

2
Xni1 = Xp — (%) (n=012,...)
f (% + F (%) — f (%)

Remark: Both the secant method and Steffensen’s method require computing the values of the
function f but not of the derivatives.
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Proof of the convergence of Steffensen’s method: Utilizing Lagrange’s mean value theorem:

(% + ()= F () = OO + £ (%) = X0) = £0)- (%)

therefore
oy —x*—f(xn):x B *_f(xn)—f(x*)zx —x*—&(x —x*):
n+1 n f'(t) n f'('[) n f'(t) n
_f’(t)—f’(s). o :f”(w)- o o
T G Dhtr R CORCRLY

Since f’(x*) = 0, therefore the derivative function differs from a closed neighbourhood of X,

and here:
| X —x*|<w|t—s||x —x*|<
N+l " min| f'] " " min| f]

max | f"| * 9 * 12
Xy =X P =C =X
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Differentiation of functions mapping between Banach spaces

Let X,Y be Banach spaces. The mapping F : X —Y is said to be differentiable at the point
X € X and its derivative is the bounded linear operator A: X — Y, if for any vector h chosen
from a proper neighbourhood of 0, the following equality is valid:

F(x+h)=F(x)+ Ah+o(h)

where o(h) is an expression such that % -0 (h—0).

Notations: F'(x) or DF(Xx).

Example: F:RN SR, F(x) =(AX,X) (where Ae My, is a self-adjoint matrix), then:
F(x+h)=(A(x+h),x+h)=(Ax,x)+2(Ax,h)+(Ah,h) = F(x)+<2Ax,h>+O(h2).

Thus, F'(x) =2AxeRN.
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Generalized Newton method

Newton’s method for the equation | F(X) =0}

Xns1 = Xn — (DF (X)) "F(x,) (n=012,...)

This means that: Xni1 =Xn —W, (n=012,...)
where the correction term w,, is the solution of the following linear equation:

DF (X)W, = F (Xn)

If F is twice continuously differentiable, F has a root in X, and DF(x*) IS regular
(i.e. invertible with a bounded inverse), then Newton’s method quadratically converges to the

exact solution X provided that the initial approximation X, is sufficiently close to X . That is,
the following estimation is valid (with a proper constant C > 0):

* * 2
” Xne1 — X ||§C|| Xp —X ”

Remark: Newton’s method converts a nonlinear problem to a sequence of linear ones.
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Generalized Newton method, an example

Inversion of a matrix. Let Ae My, be aregular matrix. For an arbitrary regular matrix
X € My« define the following operator:

F(X)=X"1-A

Then F:Mpyyxn = Mpyxn, and the unique solution of the equation F(X)=0is: X = AL,

Let us apply Newton’s method to the matrix equation. First, calculate the derivative of F:
FIX+H)=(X+H) = A=(XU+XH) A= +XH)XT-A
If the norm of the matrix H is sufficiently small, then || X *H || <|| X 2| H || <1.
Utilizing the expression (I —B) ™t =1+B+B?+B>+B*+... (whichis valid, if || B|| <1, and
impliesthat (/| —B)"!=1—-B + 0(||B||2):
FIX+H)=(l+ X TH) X T A= (1 =X T H +o(H)X - A=

=X T XTHX T +o(H) - A=F(X) - X THX !+ o(H)
whence
DF(X)H=-X"THX? =  DF(X)W =-XwWX
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Generalized Newton method, an example

Thus, the algorithm of Newton’s method is as follows:

X1 = Xp = (DF (%)) (X5t = A) = X + X (Xt = )X, =

=X (21 - AX})
For the error of the approximation: || A= = X, | =[| A1 = AX )< A7 - T =AX, |-
Observe that || I — AX,, ||converges to O very rapidly (provided that the initial approximation

was good enough), since:
| —AX =1 — AX, (21 — AX,) = 1 —2AX, + AX,AX, = (1 — AX )2,

whence
2
[T —=AX i <= AX, |l
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