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Numerical Methods 2. Solution of nonlinear equations 

 

Solution by interval halving (bisection method) 

 

Let R],[: baf  be continuous, assume that 0)(,0)(  bfaf . Let us look for a solution of 

the equation  

 
0)( xf  

 

in the interval ],[ ba . 

Bolzano’s theorem: If f is continuous on the finite, closed interval [a,b], and the signs of  

f (a) and f (b) are different, e.g. 0)(,0)(  bfaf ,  

then f has (at least one) zero in this interval. 

  

Let us systematically halve the interval ],[ ba  by taking the subinterval which has the property 

that the values of  f  at the endpoints of the subinterval have different signs. Denote by nx  the 

centre of the subinterval obtained in the nth step. Then this sequence converges to a zero (one of 

the zeroes) of the above equation. The speed of convergence is of a geometric sequence with 

quotient  ½. 
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Solution by interval halving (bisection method) 

 

The algorithm is illustrated by the following figure: 

 

 

 
 

Error estimation: Defining 
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The method based on Banach’s fixed point theorem 

 

Let X be a Banach space, let XXf :  be a mapping, and look for a vector  x such that   

 
)(xfx   

 

(a fixed point of the mapping  f). 

 

Banach’s fixed point thorem: Let X be a Banach space, let XXf :  be a contraction in X, 

i.e. assume that there exists a number 0 ≤ 𝑞 < 1 such that ||||||)()(|| yxqyfxf   is valid 

for every Xyx , . Then  f  has an unique fixed point Xx , and this is the limit of the 

following, recursively defined iteration sequence: 
 

𝑥0 ∈ 𝑋,   𝑥𝑛+1 ≔ 𝑓(𝑥𝑛)         (𝑛 = 0,1,2, … ) 
 

 

In particular, if RR :f  a function for which  1|)('|max xf   is satisfied, then  f  is a 

contraction, since Lagrange’s mean value theorem implies that 

 

|||)'|(max|||)('||)()(| yxfyxfyfxf  . 
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Proof of the fixed point theorem: The distance of two consecutive terms: 
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Utilizing this estimation, we show that )( nx  is a Cauchy sequence in  X: 
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(when 𝑛 → +∞. ) Therefore the sequence is convergent, Xxxn  . We show that x is a fixed 

point of f. By definition: )(1 nn xfx   The left hand side obviously tends to x. The right-hand 

side tends to 𝑓(𝑥), since  f is continuous. This implies that x = f (x). 
 

Finally, prove the uniqueness of the fixed point. If  x, y were two different fixed points, then 
 

||||||||||)()(||||||0 yxyxqyfxfyx   
 

would be valid, which is impossible. 
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Iteration based on Banach’s fixed point theorem, examples: 

 

1. Solve the equation  xx cos
2

1
 . 

The function defined by xxf cos
2

1
:)(   is a contraction in R, since 

2

1
|sin|

2

1
|)('|  xxf . 

Thus, an unique fixed point exists, and e.g. the following sequence converges to this: 

0:0 x , nn xx cos
2

1
:1  . The first terms of the sequence are as follows (with four decimal 

digits):  0.0000,  0.5000,  0.4387,  0.4526,  0.4496,  0.4502,  0.4501,  0.4501,   0.4501, ... 

 

 

2. Let NNB M , Ng R  be given, and solve the linear system of equations gBxx  . 

 

If 1|||| B  (with respect to an arbitrary matrix norm induced by a vector norm), then the 

mapping gBxxf :)(  is a contraction, since  
 

||||||||||||||)()(|| yxBgBygBxyfxf   
 

In this case, there exists a unique fixed point, and the vector sequence defined by 0:0x , 

gBxx nn  :1  converges to the fixed point. 
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Newton’s method for univariate functions 

 

Let R),(: baf  be a given function. Solve the equation 

 

   0xf   

 

in the interval ),( ba . 

 

 

Newton’s method: If nx  is an approximate solution, then define an improved approximation to 

be the zero of the tangent line at nx . The equation of the tangent line is:  

 

)()(')( nnn xxxfxfy  , whence: 
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Newton’s method for univariate functions 

 

Illustration of then method ( *x  denotes the exact solution): 

 

 

If f  is twice continuously differentiable, f  has a zero in (a,b), and 0)( *  xf  is valid, then 

Newton’s iteration quadratically converges to *x  for arbitrary initial approximation 0x  which 

is sufficiently close to the exact solution *x , i.e. for a proper positive constant 0C : 

 

 2**
1 |||| xxCxx nn    
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Proof: We utilize Lagrange’s mean value theorem twice: 
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Since 0)( *  xf , the derivative function differs from zero in a closed neighbourhood of *x . In 

this neighbourhood: 
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Newton’s method, example: 

 

Let A be a fixed positive number, and define: Axxf  2:)( .    ( xxf 2)('   ) 

Now the unique positive solution of the equation  

 
0)( xf  

 

is Ax  .  

 

Starting form an arbitrary initial approximation 00 x  (e.g. Ax :0 ), we arrive at the following 

recursion: 
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The sequence converges to A  extremely rapidly, requiring only additions and divisions. 

 

Remark: Newton’s method can be applied to the computation of any root in a similar way. 
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Some variants of Newton’ method 

 

The main difficulty: the computation of the derivatives. 

 

The secant method: Here 
1
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If f  is twice continuously differentiable,  f  has a root *x in (a,b), and 0)( *  xf , then the secant 

method defines an iteration which converges to *x  provided that the initial approximations 

10 , xx  are sufficiently close to the exact solution.  

The speed of convergence is at least that of a geometrical sequence, i.e.  
 

n
n qCxx  || *  

 

for some 10,0  qC  

 

Remark: In fact, the speed of convergence is faster (superlinear convergence). 
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Some variants of Newton’ method 

 

 

Steffensen’s method:  

 

Assume that the function RR:f  is twice continuously differentiable and has a unique root 
*x . Assume also that 0)( *  xf . Then for any initial approximation 0x  which is sufficiently 

close to *x , the following recursive sequence is quadratically converges to *x : 
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Remark: Both the secant method and Steffensen’s method require computing the values of the 

function  f  but not of the derivatives. 
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Proof of the convergence of Steffensen’s method: Utilizing Lagrange’s mean value theorem: 

 
)()('))(()(')())(( nnnnnnn xftfxxfxtfxfxfxf   
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Since 0)( *  xf , therefore the derivative function differs from a closed neighbourhood of *x , 

and here:  
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Differentiation of functions mapping between Banach spaces 
 

 

Let X,Y  be Banach spaces. The mapping YXF :  is said to be differentiable at the point 

Xx  and its derivative is the bounded linear operator YXA : , if for any vector h chosen 

from a proper neighbourhood of  0, the following equality is valid:  

 
)()()( hoAhxFhxF   

 

where )(ho  is an expression such that  
𝑜(ℎ)

||ℎ||
→ 𝟎  (ℎ → 𝟎). 

 

Notations: )(xF  or  )(xDF . 

 

Example: RR NF : , xAxxF ,:)(   (where NNA M  is a self-adjoint matrix), then: 

 

)(,2)(,,2,),()( 2hOhAxxFhAhhAxxAxhxhxAhxF  . 

 

Thus, NAxxF R 2)(' . 
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Generalized Newton method 

 

Newton’s method for the equation   0)( xF :           

 

  ,...)2,1,0())(( 1
1  
 nxFxDFxx nnnn  

 

This means that:               ,...)2,1,0(1  nwxx nnn  

where the correction term nw  is the solution of the following linear equation: 

 
 nnn xFwxDF )(  

 

If  F  is twice continuously differentiable, F has a root in X, and )( *xDF  is regular  

(i.e. invertible with a bounded inverse), then Newton’s method quadratically converges to the 

exact solution *x  provided that the initial approximation 0x  is sufficiently close to *x . That is, 

the following estimation is valid (with a proper constant 0C ): 
 

2**
1 |||||||| xxCxx nn   

 

 

Remark: Newton’s method converts a nonlinear problem to a sequence of linear ones.
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Generalized Newton method, an example 
 

Inversion of a matrix. Let NNA M  be a regular matrix. For an arbitrary regular matrix 

NNX M , define the following operator: 

AXXF  1:)(  
 

Then NNNNF  MM: ,  and the unique solution of the equation 0)( XF  is: 1 AX . 

 

Let us apply Newton’s method to the matrix equation. First, calculate the derivative of F:  
 

AXHXIAHXIXAHXHXF   111111 )())(()()(  
 

If the norm of the matrix H is sufficiently small, then  1|||||||||||| 11   HXHX .  

Utilizing the expression  ...)( 4321   BBBBIBI   (which is valid, if 1|||| B , and 

implies that  (𝐼 − 𝐵)−1 = 𝐼 − 𝐵 + 𝑂(||𝐵||
2

):   
 

)()()(

))(()()(
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







 

whence 

 XWXWXDFHXXHXDF   111 )()(  
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Generalized Newton method, an example  

 

 

Thus, the algorithm of Newton’s method is as follows: 
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 .       

 

For the error of the approximation: ||||||||||)(|||||| 111
nnn AXIAAXIAXA   . 

Observe that  |||| nAXI  converges to 0 very rapidly (provided that the initial approximation 

was good enough), since: 

 
2

1 )(2)2( nnnnnnn AXIAXAXAXIAXIAXIAXI   , 

 

whence 
2

1 |||||||| nn AXIAXI    

 

 


