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Linear systems of equations
Let Ae My N be aregular matrix, be R N"is a vector. Solve the following equation:

Ax=Db

It the right-hand side is perturbed and has the form: b + Ab, this causes an error Ax in the
solution: A(x+Ax)=b+Ab. Hence: Ax = A~1Ab. The absolute error:

-1
| AX[[ <] A= | -|| Ab]]

The relative error:

AX _ Ab _ ADb _ Ab _ Ab
LAXT ot AT ay g At AR Ay Aty 1200y Ay Aty 1200
Xl Il T | AX] 1b]
I Ax| < cond(A)-M, where cond (A) =| A|-|| AL | (condition number)
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Ill-conditioned equations

If Ae My, IS a self-adjoint, positive definite matrix, then

(with respect to the matrix norm induced by the Euclidean norm): cond(A) = A max

min
since in this case || Al =Amay and | A1 = M(A™) oy = 1
min

Example for ill-conditioned system of equations:

1000x + 999y =1

Solution: x=1, y=-1
999x +998y =1

1000x +999y =1

Solution: x=0.001, y=0
999x + 998y =0.999

The condition number of the matrix of the system: 3.9920E+6.




Symmetrization

Let Ae My N beagiven regular matrix, and let be R N'bea given vector. Then A" is also
regular, thus, the equation Ax =b is equivalent to the Gauss’ normal equation

AAx=A"D,

the matrix of which is self-adjoint, positive definite. However, its condition number may be
much greater than that of the original equation.

Example: if A itself is self-adjoint, positive definite, then

2

cond (A" A) = cond (A?) = k;”ax =cond (A)?
min




Problems leading to ill-conditioned equations

Approximation of functions by polynomials: Let f :[0,1]] - R be a continuous functions. Find

the polynomial of degree at most (N —1): ag+ay X+ a2x2 +...+ay _1xN‘1 , Which is the best
approximation of the function f with respect to the L, (a,b)-norm, i.e. for which the error

1 N -1 : 2
E(ag.ay,...an-g)=]| f)— X a;x! | dx
0 j=0
Is minimal. Obviously:

oE 1 N ), N -1
_:_zj f()-> ajx! x'dx = > Agaj=be (k=01..,N-1)
oay 0 j=0 j=0

1
(Hilbert matrix), and by = | f (x)- x¥dx.
0

1
where A, = [ xJ*¥dx =
Mg E|). J+k+1

The Hilbert matrices are extremely ill-conditioned. (However, using trigonometric polynomials,
the problem is well-conditioned.)

Some inverse problems may lead also to highly ill-conditioned equations as well.
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The Gaussian elimination
The problem to be solved:

11X +a12Xp +A13X3 +..t (N XN =By
a21X1 +a22X2 +323X3 +...+ a2N XN = b2

alel + aN 2X2 + aN3X3 +...+ aNN XN = bN
Dividing the first equation by a:

' ' ' '
Xl +a12X2 +a13X3 +...+ alN XN = bl
a21X1 +a22X2 +az3X3 +...+ a2N XN = b2

dn1X1 Han2Xo +aN3X3 +...+aANN XN = bN



The Gaussian elimination

Multiplying the 1st row by a,, and subtracting it from the kth row (k=2,3,...,N)

Xl +a:|'_2X2 +a:i_3X3 +...+ a]’_N XN = b]’_
a'22X2 +a,23X3 +...+ a'2N XN = b’z

ai\|2X2 +ai\|3X3 +...+ai\|N XN =b|’\|

The procedure is repeated for the equations 2.,...,N. (elimination).
At the end of the elimination, the system has the form::

X1+C12X2 +C13X3 +...+C1N XN :dl
X2 +C23X3 +"'+C2NXN =d2
X3 +"'+C3NXN :d3



The Gaussian elimination

Substitutions:
Nth equation: Xy

(N —1)th equation: Xp_1
(N —2)th equation: Xp_»

1st equation: X1

Total number of the necessary arithmetic operations: O(N 3). (very high!)

Remark: Sometimes the actual row has to be swapped with a later row to avoid a division by a
zero or an approximately zero entry.



The Gaussian elimination, example:

2X
2X
3X

-6y +10z
-5y +3z
-2y +Z

2 -6 10
2 -5 3
3 -2 1

= 12
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The Gaussian elimination, example:

2X
2X
3X

-6y +10z
-5y +3z

_2y

1
2
3

+7Z

-3 5
-5 3
-2 1

= 12
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The Gaussian elimination, example:

2X
2X
3X

-6y +10z
-5y +3z
-2y +Z

0O 1 -7

—-12
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The Gaussian elimination, example:

2X
2X
3X

-6y +10z
-5y +3z
-2y +Z
1 -3 5
o 1 -7
0o 7 -14

21

—-12
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The Gaussian elimination, example:

2x -6y +10z = -12
2X -3y +3z = -4
3x -2y 4z = 3
1 -3 5 | -6
o 1 -7/| 8

0 0 35|-35



The Gaussian elimination, example:

2x -6y +10z = -12
2X -3y +3z = -4
3x -2y 4z = 3
1 -3 5 | -6
O 1 -7| 8

o 0 1 ]|-1



The Gaussian elimination, example:

2X
2X
3X

-6y +10z
-5y +3z

_2y

o O -

o

+7Z

, O O

—-12
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The Gaussian elimination, example:

2X
2X
3X
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The Gaussian elimination, example:

2x -6y +10z = -12
2X -5y +3z = -4
3x -2y 4z = 3
1 0 0] 2
0101
0 0 1|-1
X =

18



Matrix inversion by Gaussian elimination

AAL =]
Split Aland I into column vectors:
A_lz a1 a2 a3 aN
1 0 0
1/0/(.../0
=10 1 O(=|e | €& | €3
0,00 1

Now solve the systems of equations: Aa, =gy

(k=12,....N)
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Matrix inversion by Gaussian elimination, example

o

w
= DN
o o -

o +— O

20



Matrix inversion by Gaussian elimination, example

1 2/3 0|-1/3 0 O
o 3 2| 0 10
-2 0 1] 0 0 1
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Matrix inversion by Gaussian elimination, example

1 2/3 0|-1/3 0 O
o 3 2| 0 10
0 4/3 1|-2/3 0 1
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Matrix inversion by Gaussian elimination, example

1 2/3 0 | -1/3
o 1 2/3, 0
0 4/3 1 |-2/3

0 O
1/3 0
0 1
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Matrix inversion by Gaussian elimination, example

1 2/3 0 | -1/3
0O 1 2/3| O
0O 0 1/9|-2/3

Al=2
0 0
1/3 0

-4/9 1
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Matrix inversion by Gaussian elimination, example

1 2/3 0 |-1/3
0 1 2/3, 0
0 O 1 -6

0

0

1/3 0
—4 9
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Matrix inversion by Gaussian elimination, example

1 2/3 0/-1/3 O
0O 1 0] 4 3
0O 0 1| -6 -4

0
—6
9

26



Matrix inversion by Gaussian elimination, example

o o -
o +— O

~3 -2 4
4 3 -6
6 -4 9

O O

-3 -2 4]
4 3 -6

-6 -4 9
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The Gauss-Jordan-elimination

The essential difference between Gaussian and Gauss-Jordan elimination is that when
eliminating with the kth equation, the elimination of the kth unknown is performed not only for
the latter equations but also for the previous equations at the same time. Thus, there is no need
for the substitution steps.

28



The Gauss-Jordan-elimination, example

2x -6y +10z
2X -3y +3z
3X =2y +1Z

2 -6 10
2 -5 3
3 -2 1

= 12
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The Gauss-Jordan-elimination, example

2x -6y +10z
2X -3y +3z
3X =2y +1Z
1 -3 5
2 -5 3

3 -2 1

= 12

30



The Gauss-Jordan-elimination, example

2x -6y +10z
2X -3y +3z
3X =2y +1Z

1 -3 5
0O 1 -7
3 -2 1

—-12

31



The Gauss-Jordan-elimination, example

2x -6y +10z
2X -3y +3z
3X =2y +1Z

1 -3 5

21

—-12
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The Gauss-Jordan-elimination, example

2x -6y +10z
2X -3y +3z
3X =2y +1Z

1 -3 5
o 1 -7
0 0 35

= 12

-35

33



The Gauss-Jordan-elimination, example

2X —06y
2X —9Y
3Xx =2y
1 0
01
00

+10z
+ 3z
+Z

—-16

35

= 12

-35
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The Gauss-Jordan-elimination, example

2x -6y +10z
2X -3y +3z
3X =2y +1Z

1 0 -16
01 -7
0 0 1

= 12

35



The Gauss-Jordan-elimination, example

2x -6y +10z
2X -3y +3z
3X =2y +1Z

-16

—-12
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The Gauss-Jordan-elimination, example

2x -6y +10z
2X -3y +3z
3X =2y +1Z
1 00
0 1 0
0 01

X

= 12
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The LU decomposition

If the Gaussian elimination can be performed without swapping rows (no pivot elements are 0),
then A can uniquely be decomposed in the form A= LU,
where L is a lower triangular matrix (with diagonal elements 1), U is an upper triangular matrix.

After performing the LU-decomposition, the system of equations Ax =b is equivalent to the

system LUx=Db, i.e.
Ly=b, Ux=y

Both equation require low computational cost (number of operations: O(N 2)), since:

Y1 =Dy

UN - o\ XN_2 FUNZ DXN-1 FUN_2Y NXN = YN-
lo1y1 + Y2 —b, -(N-2),(N-2)*N-2FHUN-2),(N-D)XN-1TUN-2),N*N = IN-2

l31y1 +132Y2 + Y3 =h3 | UN-1),(N-1) XN-1 TU(N-1),N XN = YN -1

UNN XN = YN

If there are a lot of right-hand sides (but the matrix remains unchanged), then the LU
decomposition has to be performed only once.

38




The LU decomposition, example

2
2
3

-6 10
-5 3
-2 1
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The LU decomposition, example

2 -6 10
0O 1 -7
3 -2 1
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The LU decomposition, example

2 —6
0 1
o 7

10
-7
~14

NTW >

41



The LU decomposition, example

2 -6 10
0O 1 -7
0O 0 35

NIW R
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The method of orthogonalization

Gram-Schmidt-orthogonalization of vector systems:

Let a;,a,,...,8, be linearly independent vectors in an Euclidean space. Define

_ e
& =a;, e:=—2 andforl<k<n:

1€
_ = CH
CH :=ak—z<ak,ej>-ej, ey ::”5 i
J=1 k

Then the obtained vector system ¢e;,e,,...,e, is orthonormal, and for any 1<k <n,
the subspaces generated by the first k vectors of e’s and a’s coincide:

[e1,€5,....6k]=[ay,85,...,8]
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The method of orthogonalization

Denote by a;,a,,...,ayN the row vectors of the matrix A. Then the equation Ax = b is equivalent
to this system:

<X,ak>=bk (k =1,2,...,N)
Denote by e;,e,,...,eN the orthonormal basis obtained by Gram-Schmidt orthogonalization from
the vectors ay,a,,...,ay . Then the numbers (x,e, ) can be calculated by the following recursion:

(X.€1) =@

lay |
k-1 k-1
_ <X,ak>—z<ak,ej>-<x,ej> bk—z<ak,ej>'<X,ej>
(% 8&) j=1 j=1
x,6p ) = k) _ . _ (k=23,...N)
e |l € | € |

Thus, the solution can be expressed in the form of finite Fourier series:

%@( € ) Ex

k=1

Number of operations: O(N 3)
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Solution of systems of equations by spectral decomposition

Let Ae My be self-adjoint, regular matrix. Denote by A4,A,,...,A the eigenvalues and

S1,S2,...,SN the orthonormal eigenvectors. Express the right-hand vector b in terms of finite
Fourier series:

N

b=>{b,s;)s;

j=1

Them the solution of the equation Ax = b:

=R
since Ax= %<b,SJ>ASJ = %<b’81>7\.131 = %<b,SJ>SJ =b.
=t A =t A =1

That is, the solution can be expressed in an explicit form. Computational cost: O(N 2).
Drawback: all of the eigenvalues (and a system of eigenvectors) should be explicitly known.
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Solution of three-diagonal system of equations by recursion

B, C, 0 O .. 0
X1 by
A, B, C, 0 S N )
2 2

0 B C 0
As B 3 % |=| b,
O “es O AN_l BN_l CN_l o
XN by

0 .. 0 0 Ay By

Try to find the solution in the form X, =M 1X1 +Nyg  (‘backward’ recursion).

Then X _g =M Xy + N =My (M1 X1+ Npga) + N = MMy g X g+ (MNp g +N)
Substituting into the kth equation (k =2,3,...,N —1):

AX 1 + B Xy + C Xy = Aclmiemy o Xy g + (Mg + M )]+ B [y 4 X1 + M ]+ Cy Xy =
= (Acmmy g+ Bemy g +Cy) X + (AcMiNp g + A + By ) =y

46



Solution of three-diagonal system of equations by recursion

The equality is clearly valid if
Acmemy g +Bemy +C =0 és Acmynp, g + Acny + Byng g =Dy,

that is, if the numbers my, n, satisfy the ‘forward’ recursions:

Cy by — A
My =— , N1 =
Ay + By

Define m:=0, n, =0, then mzz—ﬂ, nzzﬂ, and X1:m2x2+n2=—&x2+%,

whence the 1st equation: ByX; + CiXy =—CiXo +b +Cix, =by
In the backward recursion, define Xy '=ny.1, then Xy_1 =myXy + Ny, thus, the Nth equation:

AnXN-1 T BnXn = Ay (MyXy + Ny ) + By Xy = (Aymy +By) Xy +Ayny =
=(AyMy + By + ANy =by — Aynn + Ay =by

47



Solution of three-diagonal system of equations by recursion

The complete algorithm:
Forward step: 2 recursions:

m; =0, n =0
My 41 ::_Akmik+ B, N11 ZEEr;kA:g(k, (k=1...N)
Backward step: 1 recursion:
XN = NN 41

Xk—l = mk Xk + nk

(k=N,N-1...2)

Computational cost: O(N) only!

48
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Converting to a fixed point iteration

Transform the original equation |Ax =D | to the following form (there are lots of possibilities):

X=Bx+ f,

and, for an arbitrary starting approximationx, € R N consider the following iteration:

Xpyq1 = BX, + (n=012,...)

If|| B|| <1, then the mapping F(Xx):=Bx+ f is a contraction, since
IFG)—FW)I[=lIBx+f-By—f[<||B]-[|x-y]

Therefore a unique fixed point exists, and the recursively defined sequence X,,q :=BX, + f
converges to this vector.

The smaller the matrix norm || B ||, the faster the convergence.

50




Converting to a fixed point iteration

Theorem: If the absolute values of all the eigenvalues of B are less than 1,
then the iteration is convergent.

However, the condition of convergence is not always sufficient... look at the following example:

o P 0
oa P 0
B = e MyxN s f =0, Xg = eRN
a P
o 1

All the eigenvalues of B are equal to o.. The exact solution is the zero vector.

J
The computation may be broken down before the convergence, due to overflow.

(For instance, o:=1/2, B=2, n:=200, j:=100, N >200).

The (N — j)th component of the nth approximation (if n<N): x(N=) :( ja”‘JBJ
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The simple (Richardson) iteration

Let Ae My be a self-adjoint, positive definite matrix. The equation | AX =b| is equivalent to
the equation

X=X—m-(AX—Db) = (I —0A)X+ wb

where ® > 0 is an iteration parameter. This results in the fixed point iteration:

Xpi1 = (I —0A)X, +wb

The above iteration is convergent for any sufficiently small parameter o > 0.
2

Amin + Amax |

The iteration is the fastest, when || | —®A|| is the least, i.e. when o =

xmax _Kmin

In this case: || | — Al =
max A min

That is, for the proper definition of the optimal iteration parameter, the greatest and the least
eigenvalues should be known.
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The Jacobi iteration

Let us decompose the matrix of the equation |Ax =b | into the sum of a diagonal matrix, and a
lower and an upper triangular matrices: A=L+D+U. Then Dx=—(L+U)x+b, i.e.

x=-D(L+U)x+D .

The Jacobi iteration: X, = —D_l(L-l—U)Xn +D™b. Componentwise:

k-1 N
K 1 i 1 i 1
XYy =—— yagxd) - DagxV+=b  (k=12...N)
Ak j=1 Ak j=k+1 Bk

If A is diagonally dominant, i.e. )| ayj | <|ayk |, then the Jacobi iteration is convergent.
J#k

Indeed, in this case the row norm of the matrix B = —D‘l(L +U) is less than 1, since

| a; | 1
IBll=max ¥ - = max—— Yay|<L.
kjakla ] kel 2
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The Seidel iteration

The crucial difference between the Jacobi and Seidel iteration is as follows:

At the update of the components of the approximate solution, the components which have been

just updated, will be immediately utilized at the update of the next components.

k-1
k 1 1
x) = =3 ay X SJ+)1 § ay; x4y = b (k=12,...
Ak j=1 K j=k+1 Ak

N)

If A is diagonally dominant, or self-adjoint and positive definite,
then the Seidel iteration is convergent.
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Variational methods

Il
(@

Let A be a self-adjoint, positive definite matrix, and consider the equation |Ax
X~ the exact solution.

| Denote by

Introduce the inner product (x,y) , :={Ax,y) (energetic scalar product, A-scalar product).

The norm induced by this inner product is the energetic norm or A-norma: || x ||2A: (AX, X).

Define the energetic functional in the following way: F(x) :=(Ax,x)—2(x,b).

Obviously: F(x) = (x,x)4 — 2(x,x"x), = |lx —x7||, — |1x"|13, therefore:

The energetic functional has a unique minimal value,
and this is reached at the exact solution X~ of the equation Ax =Dh.

Thus, the original problem (the solution of a system of equations) is converted to a minimization
problem. The approximate solution techniques based on this minimization problem are called
variational methods.
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Minimization along a direction

LeteeRN bea given (direction) vector, and let xe R N'bea given approximate solution.
Minimize the univariate function f(t) = F(x+t-e). First, calculate the gradient of F:

F(x+h)=(Ax+ Ah,x+h)-2(x+h,b) =
= (AX,X)+ (A, h) + (Ah, x) + (Ah,h) = 2(x,b) — 2(h,b) = F (x) + 2( Ax—b, h) + (Ah, h)

which implies that DF (x)h =2(Ax—b,h), i.e. DF(x) = 2(Ax —b)
Now the minimization of f can be performed in a standard way:
f'(t) =(Df (x+t-e),e) =2(A(x+t-e)—b,e) =2(Ax—b,e) — 2t(Ae,e) =0,

(Ax—D,e)

(Ae,e)

I.e. the derivative vanishes at t =— . Consequently, the improved approximation is:

(Ax—b,e)

(Ae,e)

X=X+t-e=X— -

56



The gradient method

Main idea: the energetic functional F should always be minimized along the steepest descent
direction i.e. along the direction of the negative gradient vector.

Let x,, be an arbitrary approximate solution of the equation

Ax = b, and denote by r,, := Ax, —b

the residual vector. Then the improved approximation after minimizing the functional F along

the direction r,:

(AXy —b, 1)

xn+1:xn+t-rn:xn— <AI’ r>
n:'n

. rn

:Xn—

2
I l?

(Ar,, 1) "n

Theorem: The error after the nth step can be estimated as:

n
x 12 Ami * 012
I Xp =X ||AS(1— mmj I'Xo =X [I'a

Kmax

However, to apply the method, it is not necessary to know the extremal eigenvalues!

Computational cost: O(N 2) in each iteration step.
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The conjugate gradient method

Let A be a self-adjoint, positive definite matrix, and consider the equation [Ax=D.

Let Xg €R N be an arbitrary starting approximation and set rp := AXy —b, dg :=—ry. For every
n=01,2,..., define:

I, = AX, —Db
o <rn’dn>
Xn+1 = Xn <Adn,dn> n
M1 = AXpyp =D

A1 =—Tha+ <Arn+1,dn> -d

(Ad,,dp) "

Theorem: Without rounding errors, the conjugate gradient method results in
the exact solution within at most N iteration steps.

That is, in principle, the conjugate gradient method can be classified as a direct method.
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Eigenvalue problems

An eigenvalue problem is always equivalent to the solution of an equation of higher degree
(characteristic equation):

AS =S (s=0) =3 det(A—AI) =0

Gershgorin’s theorem: For an arbitrary matrix Ae My, the eigenvalues of A are located

in the union of the closed circles of the complex plane

centered at ay, with radius r = > |ay;| .
J=k

Indeed, let & be an eigenvalue with eigenvector s = 0. Denote by k the index, for which |s;| is
maximal, i.e. [ Si | =l S |max - FOr this index k:

N S
J
(AS)k = Zakij = dgkSk + Zakij :ksk = dxk —A=-— Z akj— =
j=1 j=k jzk Sk
S |
lag =A< 2 |yl < 2lag [=r

j=k [Sk | =k
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Eigenvalue problems

Let Ae My, be self-adjoint with eigenvalues 0 < |4,]| < |4, < -+ < |Ay_1] < |An| @and with
orthonormal eigenvectors s;,Ss,...,Sy -

The power method: Let X, be a starting vector which is not orthogonal to sy .
For n =0,1,2, ..., define X,,1 = AX,.

AXp, X
Then the sequence of the quotients g (Rayleigh quotients) converges to A .

| %, 117

N
Indeed, let X, = Zloc j (o #0), then x, = A'xg = Zlocjk”jsj . Hence
j =
1q N 2 2
(AXp,Xn)={ Do jA§s; Zakxksk = >loj |“ k|2 7", and, at the same time:
: ot

Mz
Q

N
I X, ||2=< iMis; ,kZockkT(sk>= Zl|ocj [* ]2 ", which implies the theorem.
i= = =
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Eigenvalue problems

Let Ae My, be self-adjoint with eigenvalues 0 < |4,]| < |4, < -+ < |Ay_1] < |An| @and with

orthonormal eigenvectors s;,S,,...,.Sy- Applying the power method to the inverse matrix AL

The inverse iteration: Let Xq be a starting vector which is not orthogonal to s;.

For n =0,1,2, ..., define X1 = A_lxn.

2
I Xn |

Then the sequence of quotients .
<A‘ Xn s xn>

converges to A;.

At each step of iteration, one has to solve a system of equations

(From computational point of view, the use of the LU decomposition may be advantageous).

AXni1 = Xn| -
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Eigenvalue problems

Jacobi’s method: Let Ae My, self-adjoint. Define the pair of indices (p,q) (p<q), for

which |ap, | is maximal outside the main diagonal. Define ctg2t ::aqqz;ﬂ, and
, P
1
cost ... ... ... sint
1
Q:=
1
—sint ... ... ... cost
1
1
Now update the matrix A:
A=Q AQ,

and repeat the procedure. If the eigenvalues of A are distinct, then the matrix sequence defined
above tends to a diagonal matrix, the main diagonal of which contains the eigenvalues of A.
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The Singular VValue Decomposition (SVD)

The Singular Value Decomposition (SVD): Every matrix Ae M., can be (non-uniquely)
decomposed in the form

A= USV*, where:

UeMym V €M, are orthogonal matrices;
S € M IS & diagonal matrix;
the non-zero diagonal elements of S (the singular values of A) are
the positive square roots of the matrix ATA.
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Generalized inverses of matrices

Let the singular value decomposition of the matrix A€ M., be: A=USV . Then the matrix

A" =VSTU  eM

IS said to be the generalized inverse (Moore-Penrose pseudoinverse) of the matrix A, where if

o) 1/0-1

1/0
S = , then St := 2
03 1/03

The generalized inverse is uniquely determined, and, if Ae M., is regular, then A" = AL
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Generalized solutions of systems of equations

The generalized solution of the equation Ax =D is:
determined).

x"=A'b

(always exists and uniquely

Theorem: The generalized solution of the equation Ax=Db minimizes the functional

F(x):=] Ax—b|?

Moreover, if there are several minimizing vectors, then the generalized solution has the least
Euclidean norm (the solution in the sense of least squares).

The vectors w which minimize the functional F(x) =] Ax—b ||2, satisfy the
Gaussian normal equations:

A Aw=AD

Thus, the generalized solution can be approximated by some variational (iterative) method.




