Numerical Methods 3. Approximation of linear algebraic problems

Linear systems of equations
Direct methods

Iterative methods
Eigenvalue problems
Generalized inverse

Linear systems of equations

Let $A \in \mathbf{M}_{N \times N}$ be a regular matrix, $b \in \mathbf{R}^{N}$ is a vector. Solve the following equation:

$$
A x=b
$$

It the right-hand side is perturbed and has the form: $b+\Delta b$, this causes an error Δx in the solution: $A(x+\Delta x)=b+\Delta b$. Hence: $\Delta x=A^{-1} \Delta b$. The absolute error:

$$
\|\Delta x\| \leq\left\|A^{-1}\right\| \cdot\|\Delta b\|
$$

The relative error:
$\frac{\|\Delta x\|}{\|x\|} \leq\left\|A^{-1}\right\| \cdot \frac{\|\Delta b\|}{\|x\|}=\|A\| \cdot\left\|A^{-1}\right\| \cdot \frac{\|\Delta b\|}{\|A\| \cdot\|x\|} \leq\|A\| \cdot\left\|A^{-1}\right\| \cdot \frac{\|\Delta b\|}{\|A x\|} \leq\|A\| \cdot\left\|A^{-1}\right\| \cdot \frac{\|\Delta b\|}{\|b\|}$

$$
\frac{\|\Delta x\|}{\|x\|} \leq \operatorname{cond}(A) \cdot \frac{\|\Delta b\|}{\|b\|}, \text { where } \operatorname{cond}(A):=\|A\| \cdot\left\|A^{-1}\right\|(\text { condition number })
$$

Ill-conditioned equations

If $A \in \mathbf{M}_{N \times N}$ is a self-adjoint, positive definite matrix, then
(with respect to the matrix norm induced by the Euclidean norm): $\operatorname{cond}(A)=\frac{\lambda_{\max }}{\lambda_{\min }}$
since in this case $\|A\|=\lambda_{\max }$ and $\left\|A^{-1}\right\|=\lambda\left(A^{-1}\right)_{\max }=\frac{1}{\lambda_{\min }}$.
Example for ill-conditioned system of equations:

$$
\begin{array}{rlrl}
1000 x+999 y=1 & & \text { Solution: } x=1, \quad y=-1 \\
999 x+998 y=1 & & \\
1000 x+999 y & =1 & & \text { Solution: } x=0.001, \quad y=0 \\
999 x+998 y & =0.999 &
\end{array}
$$

The condition number of the matrix of the system: $3.9920 \mathrm{E}+6$.

Symmetrization

Let $A \in \mathbf{M}_{N \times N}$ be a given regular matrix, and let $b \in \mathbf{R}^{N}$ be a given vector. Then A^{*} is also regular, thus, the equation $A x=b$ is equivalent to the Gauss' normal equation

$$
A^{*} A x=A^{*} b,
$$

the matrix of which is self-adjoint, positive definite. However, its condition number may be much greater than that of the original equation.

Example: if A itself is self-adjoint, positive definite, then

$$
\operatorname{cond}\left(A^{*} A\right)=\operatorname{cond}\left(A^{2}\right)=\frac{\lambda_{\max }^{2}}{\lambda_{\min }^{2}}=\operatorname{cond}(A)^{2}
$$

Problems leading to ill-conditioned equations

Approximation of functions by polynomials: Let $f:[0,1] \rightarrow \mathbf{R}$ be a continuous functions. Find the polynomial of degree at most $(N-1): a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{N-1} x^{N-1}$, which is the best approximation of the function f with respect to the $L_{2}(a, b)$-norm, i.e. for which the error

$$
E\left(a_{0}, a_{1}, \ldots, a_{N-1}\right):=\int_{0}^{1}\left(f(x)-\sum_{j=0}^{N-1} a_{j} x^{j}\right)^{2} d x
$$

is minimal. Obviously:

$$
\frac{\partial E}{\partial a_{k}}=-2 \int_{0}^{1}\left(f(x)-\sum_{j=0}^{N-1} a_{j} x^{j}\right) x^{k} d x \quad \Rightarrow \quad \sum_{j=0}^{N-1} A_{k j} a_{j}=b_{k} \quad(k=0,1, \ldots, N-1)
$$

where $A_{k j}=\int_{0}^{1} x^{j+k} d x=\frac{1}{j+k+1} \quad$ (Hilbert matrix), and $b_{k}=\int_{0}^{1} f(x) \cdot x^{k} d x$.
The Hilbert matrices are extremely ill-conditioned. (However, using trigonometric polynomials, the problem is well-conditioned.)

Some inverse problems may lead also to highly ill-conditioned equations as well.

Numerical Methods 3. Approximation of linear algebraic problems

Linear systems of equations
Direct methods

Iterative methods

Eigenvalue problems

Generalized inverse

The Gaussian elimination

The problem to be solved:

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}+\ldots+a_{1 N} x_{N}=b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3}+\ldots+a_{2 N} x_{N}=b_{2} \\
& \ldots \ldots \ldots . \\
& a_{N 1} x_{1}+a_{N 2} x_{2}+a_{N 3} x_{3}+\ldots+a_{N N} x_{N}=b_{N}
\end{aligned}
$$

Dividing the first equation by a_{11} :

$$
\begin{aligned}
& \quad x_{1}+a_{12}^{\prime} x_{2}+a_{13}^{\prime} x_{3}+\ldots+a_{1 N}^{\prime} x_{N}=b_{1}^{\prime} \\
& a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3}+\ldots+a_{2 N} x_{N}=b_{2} \\
& \ldots \ldots \ldots \ldots \\
& a_{N 1} x_{1}+a_{N 2} x_{2}+a_{N 3} x_{3}+\ldots+a_{N N} x_{N}=b_{N}
\end{aligned}
$$

The Gaussian elimination

Multiplying the 1 st row by $a_{k 1}$ and subtracting it from the k th row $(k=2,3, \ldots, N)$

$$
\begin{aligned}
& x_{1}+a_{12}^{\prime} x_{2}+a_{13}^{\prime} x_{3}+\ldots+a_{1 N}^{\prime} x_{N}=b_{1}^{\prime} \\
& \quad a_{22}^{\prime} x_{2}+a_{23}^{\prime} x_{3}+\ldots+a_{2 N}^{\prime} x_{N}=b_{2}^{\prime} \\
& \quad \ldots \ldots \ldots \ldots \\
& \\
& \quad a_{N 2}^{\prime} x_{2}+a_{N 3}^{\prime} x_{3}+\ldots+a_{N N}^{\prime} x_{N}=b_{N}^{\prime}
\end{aligned}
$$

The procedure is repeated for the equations $2 ., \ldots, N$. (elimination). At the end of the elimination, the system has the form::

$$
\begin{array}{r}
x_{1}+c_{12} x_{2}+c_{13} x_{3}+\ldots+c_{1 N} x_{N}=d_{1} \\
x_{2}+c_{23} x_{3}+\ldots+c_{2 N} x_{N}=d_{2} \\
x_{3}+\ldots+c_{3 N} x_{N}=d_{3}
\end{array}
$$

$$
x_{N}=d_{N}
$$

The Gaussian elimination

Substitutions:

$$
\begin{array}{cc}
N \text { th } & \text { equation: }
\end{array} x_{N}
$$

Total number of the necessary arithmetic operations: $O\left(N^{3}\right)$. (very high!)
Remark: Sometimes the actual row has to be swapped with a later row to avoid a division by a zero or an approximately zero entry.

The Gaussian elimination, example:

$$
\begin{aligned}
& 2 x-6 y+10 z=-12 \\
& 2 x-5 y+3 z=-4 \\
& 3 x-2 y+z=3
\end{aligned}
$$

$$
\left(\begin{array}{ccc|c}
2 & -6 & 10 & -12 \\
2 & -5 & 3 & -4 \\
3 & -2 & 1 & 3
\end{array}\right)
$$

The Gaussian elimination, example:

$$
\begin{aligned}
& 2 x-6 y+10 z=-12 \\
& 2 x-5 y+3 z=-4 \\
& 3 x-2 y+z=3
\end{aligned}
$$

$$
\left(\begin{array}{ccc|c}
1 & -3 & 5 & -6 \\
2 & -5 & 3 & -4 \\
3 & -2 & 1 & 3
\end{array}\right)
$$

The Gaussian elimination, example:

$$
\begin{aligned}
& 2 x-6 y+10 z=-12 \\
& 2 x-5 y+3 z=-4 \\
& 3 x-2 y+z=3
\end{aligned}
$$

$$
\left(\begin{array}{ccc|c}
1 & -3 & 5 & -6 \\
0 & 1 & -7 & 8 \\
3 & -2 & 1 & 3
\end{array}\right)
$$

The Gaussian elimination, example:

$$
\begin{aligned}
& 2 x-6 y+10 z=-12 \\
& 2 x-5 y+3 z=-4 \\
& 3 x-2 y+z=3
\end{aligned}
$$

$$
\left(\begin{array}{ccc|c}
1 & -3 & 5 & -6 \\
0 & 1 & -7 & 8 \\
0 & 7 & -14 & 21
\end{array}\right)
$$

The Gaussian elimination, example:

$$
\begin{aligned}
& 2 x-6 y+10 z=-12 \\
& 2 x-5 y+3 z=-4 \\
& 3 x-2 y+z=3
\end{aligned}
$$

$$
\left(\begin{array}{ccc|c}
1 & -3 & 5 & -6 \\
0 & 1 & -7 & 8 \\
0 & 0 & 35 & -35
\end{array}\right)
$$

The Gaussian elimination, example:

$$
\begin{aligned}
& 2 x-6 y+10 z=-12 \\
& 2 x-5 y+3 z=-4 \\
& 3 x-2 y+z=3
\end{aligned}
$$

$$
\left(\begin{array}{ccc|c}
1 & -3 & 5 & -6 \\
0 & 1 & -7 & 8 \\
0 & 0 & 1 & -1
\end{array}\right)
$$

The Gaussian elimination, example:

$$
\begin{aligned}
& 2 x-6 y+10 z=-12 \\
& 2 x-5 y+3 z=-4 \\
& 3 x-2 y+z=3
\end{aligned}
$$

$$
\left(\begin{array}{ccc|c}
1 & -3 & 5 & -6 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & -1
\end{array}\right)
$$

The Gaussian elimination, example:

$$
\begin{aligned}
& 2 x-6 y+10 z=-12 \\
& 2 x-5 y+3 z=-4 \\
& 3 x-2 y+z=3
\end{aligned}
$$

$$
\left(\begin{array}{ccc|c}
1 & -3 & 0 & -1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & -1
\end{array}\right)
$$

The Gaussian elimination, example:

$$
\begin{aligned}
& 2 x-6 y+10 z=-12 \\
& 2 x-5 y+3 z=-4 \\
& 3 x-2 y+z=3
\end{aligned}
$$

$$
\left(\begin{array}{ccc|c}
1 & 0 & 0 & 2 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & -1
\end{array}\right)
$$

$$
\begin{aligned}
x & =2 \\
y & =1 \\
z & =-1
\end{aligned}
$$

Matrix inversion by Gaussian elimination

$$
A A^{-1}=I
$$

Split A^{-1} and I into column vectors:

$$
\begin{aligned}
& A^{-1}=\left(\begin{array}{l|l|l|l|l}
& & & & \\
a_{1} & a_{2} & a_{3} & \ldots & a_{N} \\
& & & & \\
& & & &
\end{array}\right) \\
& I=\left(\begin{array}{c|c|c|c|c}
1 & 0 & 0 & \ldots & 0 \\
0 & 1 & 0 & \ldots & 0 \\
0 & 0 & 1 & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
0 & 0 & 0 & \ldots & 1
\end{array}\right)=\left(e_{1}\left|e_{2}\right| e_{3}|\ldots| e_{N}\right)
\end{aligned}
$$

Now solve the systems of equations: $A a_{k}=e_{k} \quad(k=1,2, \ldots, N)$

Matrix inversion by Gaussian elimination, example

$$
\begin{aligned}
& A:=\left(\begin{array}{ccc}
-3 & 2 & 0 \\
0 & 3 & 2 \\
-2 & 0 & 1
\end{array}\right), A^{-1}=? \\
& \left(\begin{array}{ccc|ccc}
-3 & -2 & 0 & 1 & 0 & 0 \\
0 & 3 & 2 & 0 & 1 & 0 \\
-2 & 0 & 1 & 0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

Matrix inversion by Gaussian elimination, example

$$
A:=\left(\begin{array}{ccc}
-3 & 2 & 0 \\
0 & 3 & 2 \\
-2 & 0 & 1
\end{array}\right), \quad A^{-1}=?
$$

$$
\left(\begin{array}{ccc|ccc}
1 & 2 / 3 & 0 & -1 / 3 & 0 & 0 \\
0 & 3 & 2 & 0 & 1 & 0 \\
-2 & 0 & 1 & 0 & 0 & 1
\end{array}\right)
$$

Matrix inversion by Gaussian elimination, example

$$
A:=\left(\begin{array}{ccc}
-3 & 2 & 0 \\
0 & 3 & 2 \\
-2 & 0 & 1
\end{array}\right), \quad A^{-1}=?
$$

$$
\left(\begin{array}{ccc|ccc}
1 & 2 / 3 & 0 & -1 / 3 & 0 & 0 \\
0 & 3 & 2 & 0 & 1 & 0 \\
0 & 4 / 3 & 1 & -2 / 3 & 0 & 1
\end{array}\right)
$$

Matrix inversion by Gaussian elimination, example

$$
A:=\left(\begin{array}{ccc}
-3 & 2 & 0 \\
0 & 3 & 2 \\
-2 & 0 & 1
\end{array}\right), \quad A^{-1}=?
$$

$$
\left(\begin{array}{ccc|ccc}
1 & 2 / 3 & 0 & -1 / 3 & 0 & 0 \\
0 & 1 & 2 / 3 & 0 & 1 / 3 & 0 \\
0 & 4 / 3 & 1 & -2 / 3 & 0 & 1
\end{array}\right)
$$

Matrix inversion by Gaussian elimination, example

$$
A:=\left(\begin{array}{ccc}
-3 & 2 & 0 \\
0 & 3 & 2 \\
-2 & 0 & 1
\end{array}\right), \quad A^{-1}=?
$$

$$
\left(\begin{array}{ccc|ccc}
1 & 2 / 3 & 0 & -1 / 3 & 0 & 0 \\
0 & 1 & 2 / 3 & 0 & 1 / 3 & 0 \\
0 & 0 & 1 / 9 & -2 / 3 & -4 / 9 & 1
\end{array}\right)
$$

Matrix inversion by Gaussian elimination, example

$$
\begin{aligned}
& A:=\left(\begin{array}{ccc}
-3 & 2 & 0 \\
0 & 3 & 2 \\
-2 & 0 & 1
\end{array}\right), A^{-1}=? \\
& \left(\begin{array}{ccc|ccc}
1 & 2 / 3 & 0 & -1 / 3 & 0 & 0 \\
0 & 1 & 2 / 3 & 0 & 1 / 3 & 0 \\
0 & 0 & 1 & -6 & -4 & 9
\end{array}\right)
\end{aligned}
$$

Matrix inversion by Gaussian elimination, example

$$
A:=\left(\begin{array}{ccc}
-3 & 2 & 0 \\
0 & 3 & 2 \\
-2 & 0 & 1
\end{array}\right), \quad A^{-1}=?
$$

$$
\left(\begin{array}{ccc|ccc}
1 & 2 / 3 & 0 & -1 / 3 & 0 & 0 \\
0 & 1 & 0 & 4 & 3 & -6 \\
0 & 0 & 1 & -6 & -4 & 9
\end{array}\right)
$$

Matrix inversion by Gaussian elimination, example

$$
\begin{aligned}
& A:=\left(\begin{array}{ccc}
-3 & 2 & 0 \\
0 & 3 & 2 \\
-2 & 0 & 1
\end{array}\right), A^{-1}=? \\
& \left(\begin{array}{lll|ccc}
1 & 0 & 0 & -3 & -2 & 4 \\
0 & 1 & 0 & 4 & 3 & -6 \\
0 & 0 & 1 & -6 & -4 & 9
\end{array}\right) \\
& A^{-1}=\left[\begin{array}{ccc}
-3 & -2 & 4 \\
4 & 3 & -6 \\
-6 & -4 & 9
\end{array}\right]
\end{aligned}
$$

The Gauss-Jordan-elimination

The essential difference between Gaussian and Gauss-Jordan elimination is that when eliminating with the k th equation, the elimination of the k th unknown is performed not only for the latter equations but also for the previous equations at the same time. Thus, there is no need for the substitution steps.

The Gauss-Jordan-elimination, example

$$
\begin{aligned}
& 2 x-6 y+10 z=-12 \\
& 2 x-5 y+3 z=-4 \\
& 3 x-2 y+z=3
\end{aligned}
$$

$$
\left(\begin{array}{ccc|c}
2 & -6 & 10 & -12 \\
2 & -5 & 3 & -4 \\
3 & -2 & 1 & 3
\end{array}\right)
$$

The Gauss-Jordan-elimination, example

$$
\begin{aligned}
& 2 x-6 y+10 z=-12 \\
& 2 x-5 y+3 z=-4 \\
& 3 x-2 y+z=3
\end{aligned}
$$

$$
\left(\begin{array}{ccc|c}
1 & -3 & 5 & -6 \\
2 & -5 & 3 & -4 \\
3 & -2 & 1 & 3
\end{array}\right)
$$

The Gauss-Jordan-elimination, example

$$
\left.\left.\begin{array}{l}
2 x-6 y+10 z=-12 \\
2 x-5 y+3 z=-4 \\
3 x-2 y+z=3
\end{array}\right] \begin{array}{ccc|c}
1 & -3 & 5 & -6 \\
0 & 1 & -7 & 8 \\
3 & -2 & 1 & 3
\end{array}\right), ~ \$
$$

The Gauss-Jordan-elimination, example

$$
\left.\left.\begin{array}{l}
2 x-6 y+10 z=-12 \\
2 x-5 y+3 z=-4 \\
3 x-2 y+z=3
\end{array}\right] \begin{array}{ccc|c}
1 & -3 & 5 & -6 \\
0 & 1 & -7 & 8 \\
0 & 7 & -14 & 21
\end{array}\right), ~ \$
$$

The Gauss-Jordan-elimination, example

$$
\begin{aligned}
& 2 x-6 y+10 z=-12 \\
& 2 x-5 y+3 z=-4 \\
& 3 x-2 y+z=3
\end{aligned}
$$

$$
\left(\begin{array}{ccc|c}
1 & -3 & 5 & -6 \\
0 & 1 & -7 & 8 \\
0 & 0 & 35 & -35
\end{array}\right)
$$

The Gauss-Jordan-elimination, example

$$
\begin{aligned}
& 2 x-6 y+10 z=-12 \\
& 2 x-5 y+3 z=-4 \\
& 3 x-2 y+z=3
\end{aligned}
$$

$$
\left(\begin{array}{ccc|c}
1 & 0 & -16 & 18 \\
0 & 1 & -7 & 8 \\
0 & 0 & 35 & -35
\end{array}\right)
$$

The Gauss-Jordan-elimination, example

$$
\begin{aligned}
& 2 x-6 y+10 z=-12 \\
& 2 x-5 y+3 z=-4 \\
& 3 x-2 y+z=3
\end{aligned}
$$

$$
\left(\begin{array}{ccc|c}
1 & 0 & -16 & 18 \\
0 & 1 & -7 & 8 \\
0 & 0 & 1 & -1
\end{array}\right)
$$

The Gauss-Jordan-elimination, example

$$
\begin{aligned}
& 2 x-6 y+10 z=-12 \\
& 2 x-5 y+3 z=-4 \\
& 3 x-2 y+z=3
\end{aligned}
$$

$$
\left(\begin{array}{ccc|c}
1 & 0 & -16 & 18 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & -1
\end{array}\right)
$$

The Gauss-Jordan-elimination, example

$$
\begin{aligned}
& 2 x-6 y+10 z=-12 \\
& 2 x-5 y+3 z=-4 \\
& 3 x-2 y+z=3
\end{aligned}
$$

$$
\left(\begin{array}{ccc|c}
1 & 0 & 0 & 2 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & -1
\end{array}\right)
$$

$$
\begin{aligned}
x & =2 \\
y & =1 \\
z & =-1
\end{aligned}
$$

The $L U$ decomposition

If the Gaussian elimination can be performed without swapping rows (no pivot elements are 0), then A can uniquely be decomposed in the form $A=L U$,
where L is a lower triangular matrix (with diagonal elements 1), U is an upper triangular matrix.
After performing the $L U$-decomposition, the system of equations $A x=b$ is equivalent to the system $L U x=b$, i.e.

$$
L y=b, \quad U x=y
$$

Both equation require low computational cost (number of operations: $O\left(N^{2}\right)$), since:

$$
\begin{array}{llr}
y_{1} & =b_{1} & \cdots \\
l_{21} y_{1}+y_{2} & =b_{2} \\
l_{31} y_{1}+l_{32} y_{2}+y_{3}=b_{3} & u_{(N-2),(N-2)} x_{N-2}+u_{(N-2),(N-1)} x_{N-1}+u_{(N-2), N} x_{N}=y_{N-2} \\
\ldots & u_{(N-1),(N-1)} x_{N-1}+u_{(N-1), N} x_{N}=y_{N-1} \\
\ldots & u_{N N} x_{N}=y_{N}
\end{array}
$$

If there are a lot of right-hand sides (but the matrix remains unchanged), then the $L U$ decomposition has to be performed only once.

The $L U$ decomposition, example

$$
\left(\begin{array}{ccc}
2 & -6 & 10 \\
2 & -5 & 3 \\
3 & -2 & 1
\end{array}\right) \quad\left(\begin{array}{lll}
1 & & \\
& 1 & \\
& & 1
\end{array}\right)
$$

The $L U$ decomposition, example

$$
\left(\begin{array}{ccc}
2 & -6 & 10 \\
0 & 1 & -7 \\
3 & -2 & 1
\end{array}\right) \quad\left(\begin{array}{lll}
1 & & \\
1 & 1 & \\
& & 1
\end{array}\right)
$$

The $L U$ decomposition, example

$$
\left(\begin{array}{ccc}
2 & -6 & 10 \\
0 & 1 & -7 \\
0 & 7 & -14
\end{array}\right) \quad\left(\begin{array}{ccc}
1 & & \\
1 & 1 & \\
\frac{3}{2} & & 1
\end{array}\right)
$$

The $L U$ decomposition, example

$$
\begin{array}{cc}
\left(\begin{array}{ccc}
2 & -6 & 10 \\
0 & 1 & -7 \\
0 & 0 & 35
\end{array}\right) & \left(\begin{array}{ccc}
1 & & \\
1 & 1 & \\
\frac{3}{2} & 7 & 1
\end{array}\right) \\
U & L
\end{array}
$$

The method of orthogonalization

Gram-Schmidt-orthogonalization of vector systems:
Let $a_{1}, a_{2}, \ldots, a_{n}$ be linearly independent vectors in an Euclidean space. Define

$$
\begin{gathered}
\tilde{e}_{1}:=a_{1}, \quad e_{1}:=\frac{\tilde{e}_{1}}{\left\|\tilde{e}_{1}\right\|}, \text { and for } 1<k \leq n: \\
\tilde{e}_{k}:=a_{k}-\sum_{j=1}^{k-1}\left\langle a_{k}, e_{j}\right\rangle \cdot e_{j}, \quad e_{k}:=\frac{\tilde{e}_{k}}{\left\|\tilde{e}_{k}\right\|}
\end{gathered}
$$

Then the obtained vector system $e_{1}, e_{2}, \ldots, e_{n}$ is orthonormal, and for any $1 \leq k \leq n$, the subspaces generated by the first k vectors of e^{\prime} 's and a 's coincide:

$$
\left[e_{1}, e_{2}, \ldots, e_{k}\right]=\left[a_{1}, a_{2}, \ldots, a_{k}\right]
$$

The method of orthogonalization

Denote by $a_{1}, a_{2}, \ldots, a_{N}$ the row vectors of the matrix A. Then the equation $A x=b$ is equivalent to this system:

$$
\left\langle x, a_{k}\right\rangle=b_{k} \quad(k=1,2, \ldots, N)
$$

Denote by $e_{1}, e_{2}, \ldots, e_{N}$ the orthonormal basis obtained by Gram-Schmidt orthogonalization from the vectors $a_{1}, a_{2}, \ldots, a_{N}$. Then the numbers $\left\langle x, e_{k}\right\rangle$ can be calculated by the following recursion:

$$
\begin{array}{r}
\left\langle x, e_{1}\right\rangle=\frac{\left\langle x, a_{1}\right\rangle}{\left\|a_{1}\right\|} \\
\left\langle x, e_{k}\right\rangle=\frac{\left\langle x, \tilde{e}_{k}\right\rangle}{\left\|\tilde{e}_{k}\right\|}=\frac{\left\langle x, a_{k}\right\rangle-\sum_{j=1}^{k-1}\left\langle a_{k}, e_{j}\right\rangle \cdot\left\langle x, e_{j}\right\rangle}{\left\|\tilde{e}_{k}\right\|}=\frac{b_{k}-\sum_{j=1}^{k-1}\left\langle a_{k}, e_{j}\right\rangle \cdot\left\langle x, e_{j}\right\rangle}{\left\|\tilde{e}_{k}\right\|} \quad(k=2,3, \ldots, N), \quad l
\end{array}
$$

Thus, the solution can be expressed in the form of finite Fourier series:

$$
x=\sum_{k=1}^{N}\left\langle x, e_{k}\right\rangle \cdot e_{k}
$$

Number of operations: $O\left(N^{3}\right)$

Solution of systems of equations by spectral decomposition

Let $A \in \mathbf{M}_{N \times N}$ be self-adjoint, regular matrix. Denote by $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{N}$ the eigenvalues and $s_{1}, s_{2}, \ldots, s_{N}$ the orthonormal eigenvectors. Express the right-hand vector b in terms of finite Fourier series:

$$
b=\sum_{j=1}^{N}\left\langle b, s_{j}\right\rangle \cdot s_{j}
$$

Them the solution of the equation $A x=b$:

$$
x=\sum_{j=1}^{N} \frac{\left\langle b, s_{j}\right\rangle}{\lambda_{j}} \cdot s_{j}
$$

since $A x=\sum_{j=1}^{N} \frac{\left\langle b, s_{j}\right\rangle}{\lambda_{j}} \cdot A s_{j}=\sum_{j=1}^{N} \frac{\left\langle b, s_{j}\right\rangle}{\lambda_{j}} \cdot \lambda_{j} s_{j}=\sum_{j=1}^{N}\left\langle b, s_{j}\right\rangle \cdot s_{j}=b$.
That is, the solution can be expressed in an explicit form. Computational cost: $O\left(N^{2}\right)$.
Drawback: all of the eigenvalues (and a system of eigenvectors) should be explicitly known.

Solution of three-diagonal system of equations by recursion

$$
\left(\begin{array}{cccccc}
B_{1} & C_{1} & 0 & 0 & \ldots & 0 \\
A_{2} & B_{2} & C_{2} & 0 & \ldots & 0 \\
0 & A_{3} & B_{3} & C_{3} & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
0 & \ldots & 0 & A_{N-1} & B_{N-1} & C_{N-1} \\
0 & \ldots & 0 & 0 & A_{N} & B_{N}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
\ldots \\
x_{N}
\end{array}\right)=\left(\begin{array}{c}
b_{1} \\
b_{2} \\
b_{3} \\
\cdots \\
b_{N}
\end{array}\right)
$$

Try to find the solution in the form $\quad x_{k}:=m_{k+1} x_{k+1}+n_{k+1} \quad$ ('backward' recursion).

Then $\quad x_{k-1}:=m_{k} x_{k}+n_{k}=m_{k}\left(m_{k+1} x_{k+1}+n_{n+1}\right)+n_{k}=m_{k} m_{k+1} x_{k+1}+\left(m_{k} n_{n+1}+n_{k}\right)$
Substituting into the k th equation $(k=2,3, \ldots, N-1)$:

$$
\begin{gathered}
A_{k} x_{k-1}+B_{k} x_{k}+C_{k} x_{k+1}=A_{k}\left[m_{k} m_{k+1} x_{k+1}+\left(m_{k} n_{n+1}+n_{k}\right)\right]+B_{k}\left[m_{k+1} x_{k+1}+n_{k+1}\right]+C_{k} x_{k+1}= \\
=\left(A_{k} m_{k} m_{k+1}+B_{k} m_{k+1}+C_{k}\right) x_{k+1}+\left(A_{k} m_{k} n_{n+1}+A_{k} n_{k}+B_{k} n_{k+1}\right)=b_{k}
\end{gathered}
$$

Solution of three-diagonal system of equations by recursion

The equality is clearly valid if

$$
A_{k} m_{k} m_{k+1}+B_{k} m_{k+1}+C_{k}=0 \quad \text { és } \quad A_{k} m_{k} n_{n+1}+A_{k} n_{k}+B_{k} n_{k+1}=b_{k}
$$

that is, if the numbers $m_{k}, \quad n_{k}$ satisfy the 'forward' recursions:

$$
m_{k+1}=-\frac{C_{k}}{A_{k} m_{k}+B_{k}}, \quad n_{k+1}=\frac{b_{k}-A_{k} n_{k}}{A_{k} m_{k}+B_{k}}
$$

Define $m_{1}:=0, \quad n_{1}:=0$, then $m_{2}=-\frac{C_{1}}{B_{1}}, \quad n_{2}=\frac{b_{1}}{B_{1}}, \quad$ and $\quad x_{1}=m_{2} x_{2}+n_{2}=-\frac{C_{1}}{B_{1}} x_{2}+\frac{b_{1}}{B_{1}}$,
whence the 1 st equation: $B_{1} x_{1}+C_{1} x_{2}=-C_{1} x_{2}+b_{1}+C_{1} x_{2}=b_{1}$
In the backward recursion, define $x_{N}:=n_{N+1}$, then $x_{N-1}=m_{N} x_{N}+n_{N}$, thus, the N th equation:

$$
\begin{aligned}
& A_{N} x_{N-1}+B_{N} x_{N}=A_{N}\left(m_{N} x_{N}+n_{N}\right)+B_{N} x_{N}=\left(A_{N} m_{N}+B_{N}\right) x_{N}+A_{N} n_{N}= \\
& =\left(A_{N} m_{N}+B_{N}\right) n_{N+1}+A_{N} n_{N}=b_{N}-A_{N} n_{N}+A_{N} n_{N}=b_{N}
\end{aligned}
$$

Solution of three-diagonal system of equations by recursion

The complete algorithm:
Forward step: 2 recursions:

$$
\begin{array}{ll}
m_{1}:=0, & n_{1}:=0 \\
m_{k+1}:=-\frac{C_{k}}{A_{k} m_{k}+B_{k}}, & n_{k+1}:=\frac{b_{k}-A_{k} n_{k}}{A_{k} m_{k}+B_{k}},
\end{array} \quad(k=1, \ldots, N) .
$$

Backward step: 1 recursion:

$$
\begin{aligned}
& x_{N}:=n_{N+1} \\
& x_{k-1}:=m_{k} x_{k}+n_{k} \quad(k=N, N-1, \ldots, 2)
\end{aligned}
$$

Computational cost: $O(N)$ only!

Numerical Methods 3. Approximation of linear algebraic problems

Linear systems of equations
Direct methods

Iterative methods

Eigenvalue problems
Generalized inverse

Converting to a fixed point iteration

Transform the original equation $A x=b$ to the following form (there are lots of possibilities):

$$
x=B x+f,
$$

and, for an arbitrary starting approximation $x_{0} \in \mathbf{R}^{N}$, consider the following iteration:

$$
x_{n+1}:=B x_{n}+f \quad(n=0,1,2, \ldots)
$$

If $\|B\|<1$, then the mapping $F(x):=B x+f$ is a contraction, since

$$
\|F(x)-F(y)\|=\|B x+f-B y-f\| \leq\|B\| \cdot\|x-y\|
$$

Therefore a unique fixed point exists, and the recursively defined sequence $x_{n+1}:=B x_{n}+f$ converges to this vector.

The smaller the matrix norm $\|B\|$, the faster the convergence.

Converting to a fixed point iteration

Theorem: If the absolute values of all the eigenvalues of B are less than 1, then the iteration is convergent.

However, the condition of convergence is not always sufficient... look at the following example:

$$
B:=\left(\begin{array}{ccccc}
\alpha & \beta & & & \\
& \alpha & \beta & & \\
& & \ldots & \ldots & \\
& & & \alpha & \beta \\
& & & & \alpha
\end{array}\right) \in \mathbf{M}_{N \times N}, \quad f:=\mathbf{0}, \quad x_{0}:=\left(\begin{array}{c}
0 \\
0 \\
\ldots \\
0 \\
1
\end{array}\right) \in \mathbf{R}^{N}
$$

All the eigenvalues of B are equal to α. The exact solution is the zero vector.
The $(N-j)$ th component of the nth approximation (if $n<N): x_{n}^{(N-j)}=\binom{n}{j} \alpha^{n-j} \beta^{j}$
The computation may be broken down before the convergence, due to overflow.
(For instance, $\alpha:=1 / 2, \quad \beta:=2, \quad n:=200, \quad j:=100, \quad N>200$).

The simple (Richardson) iteration

Let $A \in \mathbf{M}_{N \times N}$ be a self-adjoint, positive definite matrix. The equation $A x=b$ is equivalent to the equation

$$
x=x-\omega \cdot(A x-b)=(I-\omega A) x+\omega b
$$

where $\omega>0$ is an iteration parameter. This results in the fixed point iteration:

$$
x_{n+1}:=(I-\omega A) x_{n}+\omega b
$$

The above iteration is convergent for any sufficiently small parameter $\omega>0$. The iteration is the fastest, when $\|I-\omega A\|$ is the least, i.e. when $\omega=\frac{2}{\lambda_{\min }+\lambda_{\max }}$.

In this case: $\|I-\omega A\|=\frac{\lambda_{\max }-\lambda_{\min }}{\lambda_{\max }+\lambda_{\min }}$

That is, for the proper definition of the optimal iteration parameter, the greatest and the least eigenvalues should be known.

The Jacobi iteration

Let us decompose the matrix of the equation $A x=b$ into the sum of diagonal matrix, and a lower and an upper triangular matrices: $A=L+D+U$. Then $D x=-(L+U) x+b$, i.e. $x=-D^{-1}(L+U) x+D^{-1} b$.

The Jacobi iteration: $x_{n+1}=-D^{-1}(L+U) x_{n}+D^{-1} b$. Componentwise:

$$
x_{n+1}^{(k)}=-\frac{1}{a_{k k}} \sum_{j=1}^{k-1} a_{k j} x_{n}^{(j)}-\frac{1}{a_{k k}} \sum_{j=k+1}^{N} a_{k j} x_{n}^{(j)}+\frac{1}{a_{k k}} \cdot b_{k} \quad(k=1,2, \ldots, N)
$$

If A is diagonally dominant, i.e. $\sum_{j \neq k}\left|a_{k j}\right|<\left|a_{k k}\right|$, then the Jacobi iteration is convergent.
Indeed, in this case the row norm of the matrix $B:=-D^{-1}(L+U)$ is less than 1 , since $\|B\|=\max _{k} \sum_{j \neq k} \frac{\left|a_{k j}\right|}{\left|a_{k k}\right|}=\max _{k} \frac{1}{\left|a_{k k}\right|} \sum_{j \neq k}\left|a_{k j}\right|<1$.

The Seidel iteration

The crucial difference between the Jacobi and Seidel iteration is as follows:
At the update of the components of the approximate solution, the components which have been just updated, will be immediately utilized at the update of the next components.

$$
x_{n+1}^{(k)}=-\frac{1}{a_{k k}} \sum_{j=1}^{k-1} a_{k j} x_{n+1}^{(j)}-\frac{1}{a_{k k}} \sum_{j=k+1}^{N} a_{k j} x_{n}^{(j)}+\frac{1}{a_{k k}} \cdot b_{k} \quad(k=1,2, \ldots, N)
$$

If A is diagonally dominant, or self-adjoint and positive definite, then the Seidel iteration is convergent.

Variational methods

Let A be a self-adjoint, positive definite matrix, and consider the equation $A x=b$. Denote by x^{*} the exact solution.

Introduce the inner product $\langle x, y\rangle_{A}:=\langle A x, y\rangle$ (energetic scalar product, \boldsymbol{A}-scalar product). The norm induced by this inner product is the energetic norm or A-norma: $\|x\|_{A}^{2}=\langle A x, x\rangle$.

Define the energetic functional in the following way: $F(x):=\langle A x, x\rangle-2\langle x, b\rangle$.
Obviously: $F(x)=\langle x, x\rangle_{A}-2\left\langle x, x^{*} x\right\rangle_{A}=| | x-x^{*}\left\|_{A}^{2}-\right\| x^{*} \|_{A}^{2}$, therefore:
The energetic functional has a unique minimal value, and this is reached at the exact solution x^{*} of the equation $A x=b$.

Thus, the original problem (the solution of a system of equations) is converted to a minimization problem. The approximate solution techniques based on this minimization problem are called variational methods.

Minimization along a direction

Let $e \in \mathbf{R}^{N}$ be a given (direction) vector, and let $x \in \mathbf{R}^{N}$ be a given approximate solution. Minimize the univariate function $f(t):=F(x+t \cdot e)$. First, calculate the gradient of F :

$$
\begin{gathered}
F(x+h)=\langle A x+A h, x+h\rangle-2\langle x+h, b\rangle= \\
=\langle A x, x\rangle+\langle A x, h\rangle+\langle A h, x\rangle+\langle A h, h\rangle-2\langle x, b\rangle-2\langle h, b\rangle=F(x)+2\langle A x-b, h\rangle+\langle A h, h\rangle
\end{gathered}
$$

which implies that $D F(x) h=2\langle A x-b, h\rangle$, i.e. $D F(x)=2(A x-b)$

Now the minimization of f can be performed in a standard way:

$$
f^{\prime}(t)=\langle D f(x+t \cdot e), e\rangle=2\langle A(x+t \cdot e)-b, e\rangle=2\langle A x-b, e\rangle-2 t\langle A e, e\rangle=0
$$

i.e. the derivative vanishes at $t=-\frac{\langle A x-b, e\rangle}{\langle A e, e\rangle}$. Consequently, the improved approximation is:

$$
\tilde{x}=x+t \cdot e=x-\frac{\langle A x-b, e\rangle}{\langle A e, e\rangle} \cdot e
$$

The gradient method

Main idea: the energetic functional F should always be minimized along the steepest descent direction i.e. along the direction of the negative gradient vector.

Let x_{n} be an arbitrary approximate solution of the equation $A x=b$, and denote by $r_{n}:=A x_{n}-b$ the residual vector. Then the improved approximation after minimizing the functional \mathbf{F} along the direction r_{n} :

$$
x_{n+1}=x_{n}+t \cdot r_{n}=x_{n}-\frac{\left\langle A x_{n}-b, r_{n}\right\rangle}{\left\langle A r_{n}, r_{n}\right\rangle} \cdot r_{n}=x_{n}-\frac{\left\|r_{n}\right\|^{2}}{\left\langle A r_{n}, r_{n}\right\rangle} \cdot r_{n}
$$

Theorem: The error after the nth step can be estimated as:

$$
\left\|x_{n}-x^{*}\right\|_{A}^{2} \leq\left(1-\frac{\lambda_{\min }}{\lambda_{\max }}\right)^{n}\left\|x_{0}-x^{*}\right\|_{A}^{2}
$$

However, to apply the method, it is not necessary to know the extremal eigenvalues! Computational cost: $O\left(N^{2}\right)$ in each iteration step.

The conjugate gradient method

Let A be a self-adjoint, positive definite matrix, and consider the equation $A x=b$. Let $x_{0} \in \mathbf{R}^{N}$ be an arbitrary starting approximation and set $r_{0}:=A x_{0}-b, d_{0}:=-r_{0}$. For every $n=0,1,2, \ldots$, define:

$$
\begin{gathered}
r_{n}:=A x_{n}-b \\
x_{n+1}:=x_{n}-\frac{\left\langle r_{n}, d_{n}\right\rangle}{\left\langle A d_{n}, d_{n}\right\rangle} \cdot d_{n} \\
r_{n+1}:=A x_{n+1}-b \\
d_{n+1}:=-r_{n+1}+\frac{\left\langle A r_{n+1}, d_{n}\right\rangle}{\left\langle A d_{n}, d_{n}\right\rangle} \cdot d_{n}
\end{gathered}
$$

Theorem: Without rounding errors, the conjugate gradient method results in the exact solution within at most N iteration steps.

That is, in principle, the conjugate gradient method can be classified as a direct method.

Linear systems of equations
Direct methods

Iterative methods

Eigenvalue problems

Generalized inverse

Eigenvalue problems

An eigenvalue problem is always equivalent to the solution of an equation of higher degree (characteristic equation):

$$
A s=\lambda s \quad(s \neq \mathbf{0}) \quad \Leftrightarrow \quad \operatorname{det}(A-\lambda I)=0
$$

Gershgorin's theorem: For an arbitrary matrix $A \in \mathbf{M}_{N \times N}$, the eigenvalues of A are located in the union of the closed circles of the complex plane centered at $a_{k k}$, with radius $r_{k}:=\sum_{j \neq k}\left|a_{k j}\right|$.

Indeed, let λ be an eigenvalue with eigenvector $s \neq \mathbf{0}$. Denote by k the index, for which $\left|s_{k}\right|$ is maximal, i.e. $\left|s_{k}\right|=\|s\|_{\max }$. For this index k :

$$
\begin{gathered}
(A s)_{k}=\sum_{j=1}^{N} a_{k j} s_{j}=a_{k k} s_{k}+\sum_{j \neq k} a_{k j} s_{j}=\lambda s_{k} \quad \Rightarrow \quad a_{k k}-\lambda=-\sum_{j \neq k} a_{k j} \frac{s_{j}}{s_{k}} \Rightarrow \\
\left|a_{k k}-\lambda\right| \leq \sum_{j \neq k}\left|a_{k j}\right| \cdot \frac{\left|s_{j}\right|}{\left|s_{k}\right|} \leq \sum_{j \neq k}\left|a_{k j}\right|=r_{k}
\end{gathered}
$$

Eigenvalue problems

Let $A \in \mathbf{M}_{N \times N}$ be self-adjoint with eigenvalues $0 \leq\left|\lambda_{1}\right| \leq\left|\lambda_{2}\right| \leq \cdots \leq\left|\lambda_{N-1}\right|<\left|\lambda_{N}\right|$ and with orthonormal eigenvectors $s_{1}, s_{2}, \ldots, s_{N}$.

The power method: Let x_{0} be a starting vector which is not orthogonal to s_{N}.
For $n=0,1,2, \ldots$, define $x_{n+1}:=A x_{n}$.
Then the sequence of the quotients $\frac{\left\langle A x_{n}, x_{n}\right\rangle}{\left\|x_{n}\right\|^{2}}$ (Rayleigh quotients) converges to λ_{N}.
Indeed, let $x_{0}:=\sum_{j=1}^{N} \alpha_{j} s_{j}\left(\alpha_{N} \neq 0\right)$, then $x_{n}=A^{n} x_{0}=\sum_{j=1}^{N} \alpha_{j} \lambda_{j}^{n} s_{j}$. Hence
$\begin{aligned}\left\langle A x_{n}, x_{n}\right\rangle=\left\langle\sum_{j=1}^{N} \alpha_{j} \lambda_{j}^{n+1} s_{j}, \sum_{k=1}^{N} \alpha_{k} \lambda_{k}^{n} s_{k}\right\rangle & =\sum_{j=1}^{N}\left|\alpha_{j}\right|^{2} \cdot \lambda_{j} \cdot\left|\lambda_{j}\right|^{2 n}, \text { and, at the same time: } \\ \left\|x_{n}\right\|^{2}=\left\langle\sum_{j=1}^{N} \alpha_{j} \lambda_{j}^{n} s_{j}, \sum_{k=1}^{N} \alpha_{k} \lambda_{k}^{n} s_{k}\right\rangle & =\sum_{j=1}^{N}\left|\alpha_{j}\right|^{2} \cdot\left|\lambda_{j}\right|^{2 n}, \text { which implies the theorem. }\end{aligned}$

Eigenvalue problems

Let $A \in \mathbf{M}_{N \times N}$ be self-adjoint with eigenvalues $0 \leq\left|\lambda_{1}\right| \leq\left|\lambda_{2}\right| \leq \cdots \leq\left|\lambda_{N-1}\right|<\left|\lambda_{N}\right|$ and with orthonormal eigenvectors $s_{1}, s_{2}, \ldots, s_{N}$. Applying the power method to the inverse matrix A^{-1} :

The inverse iteration: Let x_{0} be a starting vector which is not orthogonal to s_{1}.

$$
\text { For } n=0,1,2, \ldots, \text { define } x_{n+1}:=A^{-1} x_{n}
$$

Then the sequence of quotients $\frac{\left\|x_{n}\right\|^{2}}{\left\langle A^{-1} x_{n}, x_{n}\right\rangle}$ converges to λ_{1}.

At each step of iteration, one has to solve a system of equations $A x_{n+1}=x_{n}$. (From computational point of view, the use of the $L U$ decomposition may be advantageous).

Eigenvalue problems

Jacobi's method: Let $A \in \mathbf{M}_{N \times N}$ self-adjoint. Define the pair of indices $(p, q)(p<q)$, for which $\left|a_{p q}\right|$ is maximal outside the main diagonal. Define $\operatorname{ctg} 2 t:=\frac{a_{q q}-a_{p p}}{2 a_{p q}}$, and

Now update the matrix A :

$$
A:=Q^{*} A Q,
$$

and repeat the procedure. If the eigenvalues of A are distinct, then the matrix sequence defined above tends to a diagonal matrix, the main diagonal of which contains the eigenvalues of A.

Numerical Methods 3. Approximation of linear algebraic problems

Linear systems of equations
Direct methods

Iterative methods

Eigenvalue problems

Generalized inverse

The Singular Value Decomposition (SVD)

The Singular Value Decomposition (SVD): Every matrix $A \in \mathbf{M}_{m \times n}$ can be (non-uniquely) decomposed in the form

$$
A=U S V^{*}, \quad \text { where: }
$$

$U \in \mathbf{M}_{m \times m}, V \in \mathbf{M}_{n \times n}$ are orthogonal matrices;
$S \in \mathbf{M}_{m \times n}$ is a diagonal matrix;
the non-zero diagonal elements of S (the singular values of A) are the positive square roots of the matrix $A^{*} A$.

Generalized inverses of matrices

Let the singular value decomposition of the matrix $A \in \mathbf{M}_{m \times n}$ be: $A=U S V^{*}$. Then the matrix

$$
A^{+}=V S^{+} U^{*} \in \mathbf{M}_{n \times m}
$$

is said to be the generalized inverse (Moore-Penrose pseudoinverse) of the matrix A, where if

$$
S=\left(\begin{array}{llll}
\sigma_{1} & & & \\
& \sigma_{2} & & \\
& & \sigma_{3} & \\
& & & \ldots
\end{array}\right), \text { then } S^{+}:=\left(\begin{array}{cccc}
1 / \sigma_{1} & & \\
& 1 / \sigma_{2} & & \\
& & 1 / \sigma_{3} & \\
& & & \\
& & & \ldots
\end{array}\right)
$$

The generalized inverse is uniquely determined, and, if $A \in \mathbf{M}_{n \times n}$ is regular, then $A^{+}=A^{-1}$.

Generalized solutions of systems of equations

The generalized solution of the equation $A x=b$ is: $x^{+}:=A^{+} b$ (always exists and uniquely determined).

Theorem: The generalized solution of the equation $A x=b$ minimizes the functional

$$
F(x):=\|A x-b\|^{2}
$$

Moreover, if there are several minimizing vectors, then the generalized solution has the least
Euclidean norm (the solution in the sense of least squares).

The vectors w which minimize the functional $F(x):=\|A x-b\|^{2}$, satisfy the Gaussian normal equations:

$$
A^{*} A w=A^{*} b
$$

Thus, the generalized solution can be approximated by some variational (iterative) method.

