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Linear systems of equations 
 

Let NNA M  be a regular matrix, Nb R  is a vector. Solve the following equation: 

 

bAx   
 

It the right-hand side is perturbed and has the form: bb  , this causes an error x  in the 

solution: bbxxA  )( . Hence: bAx  1 . The absolute error: 

 

|||||||||||| 1 bAx    

 

The relative error: 
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, where ||||||||:)( 1 AAAcond  (condition number) 
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Ill-conditioned equations 

 

 

If NNA M  is a self-adjoint, positive definite matrix, then 

(with respect to the matrix norm induced by the Euclidean norm):  
min

max)(



Acond  

 

since in this case  max|||| A  and  
min

max
11 1
)(||||


  AA . 

 

Example for ill-conditioned system of equations: 

 

1998999

19991000





yx

yx
  Solution: 1,1  yx  

 

999.0998999

19991000





yx

yx
         Solution: 0,001.0  yx  

 

The condition number of the matrix of the system: 3.9920E+6. 
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Symmetrization 

 

 

Let NNA M   be a given regular matrix, and let Nb R  be a given vector. Then *A  is also 

regular, thus, the equation bAx   is equivalent to the Gauss’ normal equation 

  

bAAxA **  , 

 

the matrix of which is self-adjoint, positive definite. However, its condition number may be 

much greater than that of the original equation.  

 

Example: if A itself is self-adjoint, positive definite, then 
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Problems leading to ill-conditioned equations 

 

Approximation of functions by polynomials: Let R]1,0[:f  be a continuous functions. Find 

the polynomial of degree at most )1( N :  1
1

2
210 ... 

 N
N xaxaxaa  , which is the best 

approximation of the function  f  with respect to the ),(2 baL -norm, i.e. for which the error 
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kj
dxxA kj

kj     (Hilbert matrix), and   dxxxfb k
k  

1

0

)( . 

 

The Hilbert matrices are extremely ill-conditioned. (However, using trigonometric polynomials, 

the problem is well-conditioned.) 
 

Some inverse problems may lead also to highly ill-conditioned equations as well. 
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The Gaussian elimination 

 

The problem to be solved: 
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Dividing the first equation by 11a : 

 

NNNNNNN

NN

NN

bxaxaxaxa

bxaxaxaxa

bxaxaxax







...

.............

...

...     

332211

22323222121

113132121

 

 



 

8 

 

The Gaussian elimination 

 

Multiplying the 1st row by 1ka  and subtracting it from the kth row (k=2,3,...,N) 
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The procedure is repeated for the equations 2.,...,N.  (elimination). 

At the end of the elimination, the system has the form:: 
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The Gaussian elimination 

 

Substitutions: 

Nth        equation:     Nx  

( 1N )th equation:  1Nx  

( 2N )th equation:  2Nx  

.......... 

1st equation:            1x  

 

Total number of the necessary arithmetic operations:  )( 3NO .  (very high!) 

 

Remark: Sometimes the actual row has to be swapped with a later row to avoid a division by a  

zero or an approximately zero entry.  
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The Gaussian elimination, example: 
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The Gaussian elimination, example: 
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The Gaussian elimination, example: 
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The Gaussian elimination, example: 
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The Gaussian elimination, example: 
 

323

4352

121062







zyx

zyx

zyx

 

 

 























353500

8710

6531

 

 



 

15 

 

The Gaussian elimination, example: 
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The Gaussian elimination, example: 
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The Gaussian elimination, example: 
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The Gaussian elimination, example: 
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Matrix inversion by Gaussian elimination 
 

IAA 1  

Split 1A  and I  into column vectors: 
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Now solve the systems of equations: ),...,2,1( NkeAa kk   
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Matrix inversion by Gaussian elimination, example 
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Matrix inversion by Gaussian elimination, example 
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Matrix inversion by Gaussian elimination, example 
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Matrix inversion by Gaussian elimination, example 
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Matrix inversion by Gaussian elimination, example 
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Matrix inversion by Gaussian elimination, example 
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Matrix inversion by Gaussian elimination, example 
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Matrix inversion by Gaussian elimination, example 
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The Gauss-Jordan-elimination 

 

 

The essential difference between Gaussian and Gauss-Jordan elimination is that when 

eliminating with the kth equation, the elimination of the kth unknown is performed not only for 

the latter equations but also for the previous equations at the same time. Thus, there is no need 

for the substitution steps. 
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The Gauss-Jordan-elimination, example 
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The Gauss-Jordan-elimination, example 
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The Gauss-Jordan-elimination, example 
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The Gauss-Jordan-elimination, example 
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The Gauss-Jordan-elimination, example 
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The Gauss-Jordan-elimination, example 
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The Gauss-Jordan-elimination, example 
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The Gauss-Jordan-elimination, example 
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The Gauss-Jordan-elimination, example 
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The LU decomposition 

 

If the Gaussian elimination can be performed without swapping rows (no pivot elements are 0),  

then A can uniquely be decomposed in the form LUA  ,  

where L is a lower triangular matrix (with diagonal elements 1), U is an upper triangular matrix. 

 

After performing the LU-decomposition, the system of equations bAx   is equivalent to the 

system  bLUx  ,  i.e. 
yUxbLy  ,  

 

Both equation require low computational cost (number of operations: )( 2NO ), since: 
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If there are a lot of right-hand sides (but the matrix remains unchanged), then the LU 

decomposition has to be performed only once. 
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The LU decomposition, example 
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The LU decomposition, example 
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The LU decomposition, example 

 

 

 

 

 























1470

710

1062

   



















1

11

1

2

3

 

 

 



 

42 

 

The LU decomposition, example 
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The method of orthogonalization 

 

 

Gram-Schmidt-orthogonalization of vector systems:  

 

Let naaa ,...,, 21  be linearly independent vectors in an Euclidean space. Define 

||~||

~
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1
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e
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Then the obtained vector system neee ,...,, 21  is orthonormal, and for any nk 1 ,  

the subspaces generated by the first k vectors of e’s and a’s coincide: 

  

],...,,[],...,,[ 2121 kk aaaeee   
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The method of orthogonalization 

 

Denote by Naaa ,...,, 21  the row vectors of the matrix A. Then the equation Ax = b  is equivalent 

to this system:  
 

),...,2,1(, Nkbax kk   
 

Denote by Neee ,...,, 21  the orthonormal basis obtained by Gram-Schmidt orthogonalization from 

the vectors Naaa ,...,, 21 . Then the numbers kex,  can be calculated by the following recursion: 
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Thus, the solution can be expressed in the form of finite Fourier series: 
 





N
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Number of operations:  )( 3NO  
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Solution of systems of equations by spectral decomposition 

 

Let NNA M  be self-adjoint, regular matrix. Denote by N ,...,, 21  the eigenvalues and   

Nsss ,...,, 21  the orthonormal eigenvectors. Express the right-hand vector b in terms of finite 

Fourier series: 
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Them the solution of the equation   Ax = b: 
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That is, the solution can be expressed in an explicit form. Computational cost:  )( 2NO . 

Drawback: all of the eigenvalues (and a system of eigenvectors) should be explicitly known. 
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Solution of three-diagonal system of equations by recursion 
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Try to find the solution in the form   111:   kkkk nxmx    (‘backward’ recursion). 

 

Then   )()(: 1111111 knkkkkknkkkkkkk nnmxmmnnxmmnxmx    

Substituting into the kth equation )1,...,3,2(  Nk : 
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Solution of three-diagonal system of equations by recursion  

 

 

The equality is clearly valid if 

 

011   kkkkkk CmBmmA    és   kkkkknkk bnBnAnmA   11 , 

 

that is, if the numbers   kk nm ,    satisfy the ‘forward’ recursions: 
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whence the 1st equation:  1211212111 bxCbxCxCxB   

 

In the backward recursion, define  1:  NN nx ,  then NNNN nxmx 1 , thus, the Nth equation: 
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Solution of three-diagonal system of equations by recursion  

 

 

The complete algorithm: 

Forward step: 2 recursions: 
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Backward step: 1 recursion: 
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Computational cost: )(NO  only! 
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Converting to a fixed point iteration 

 

 

Transform the original equation   bAx    to the following form (there are lots of possibilities): 

 

fBxx  , 

 

and, for an arbitrary starting approximation Nx R0 , consider the following iteration:  

 

,...)2,1,0(:1  nfBxx nn  

 

If 1|||| B , then the mapping fBxxF :)(  is a contraction, since 
 

||||||||||||||)()(|| yxBfByfBxyFxF   
 

Therefore a unique fixed point exists, and the recursively defined sequence fBxx nn  :1  

converges to this vector. 

 

The smaller the matrix norm |||| B , the faster the convergence.
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Converting to a fixed point iteration 

 

 

Theorem: If the absolute values of all the eigenvalues of B are less than 1,  

then the iteration is convergent. 

 

However, the condition of convergence is not always sufficient… look at the following example:  

 

N
NN xfB R0M 
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...
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:,:,......: 0  

 

All the eigenvalues of B are equal to  . The exact solution is the zero vector. 

The ( jN  )th component of the nth approximation (if Nn  ):  jjnjN
n

j

n
x 








  )(  

The computation may be broken down before the convergence, due to overflow.  

(For instance,  200,100:,200:,2:,2/1:  Njn ). 
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The simple (Richardson) iteration 

 

Let NNA M  be a self-adjoint, positive definite matrix. The equation  bAx   is equivalent to  

the equation 
bxAIbAxxx  )()(  

 

where 0  is an iteration parameter. This results in the fixed point iteration: 

 

bxAIx nn  )(:1  

 

The above iteration is convergent for any sufficiently small parameter 0 .  

The iteration is the fastest, when |||| AI   is the least, i.e. when 
maxmin

2


 .  

In this case: 
minmax

minmax||||



 AI  

 

That is, for the proper definition of the optimal iteration parameter, the greatest and the least 

eigenvalues should be known. 
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The Jacobi iteration 

 

Let us decompose the matrix of the equation  bAx    into the sum of a diagonal matrix, and a 

lower and an upper triangular matrices:   UDLA  . Then bxULDx  )( ,  i.e. 

bDxULDx 11 )(   . 

 

The Jacobi iteration: bDxULDx nn
11

1 )( 
  .  Componentwise: 
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If A is diagonally dominant, i.e. |||| kk
kj

kj aa


 , then the Jacobi iteration is convergent. 

 

Indeed, in this case the row norm of the matrix )(: 1 ULDB    is less than 1, since 
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The Seidel iteration 

 

 

The crucial difference between the Jacobi and Seidel iteration is as follows: 

At the update of the components of the approximate solution, the components which have been 

just updated, will be immediately utilized at the update of the next components. 
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If A is diagonally dominant, or self-adjoint and positive definite,  

then the Seidel iteration is convergent. 
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Variational methods 

 

 

Let A be a self-adjoint, positive definite matrix, and consider the equation  bAx  . Denote by  

*x  the exact solution. 

 

Introduce the inner product yAxyx
A

,:,   (energetic scalar product, A-scalar product). 

The norm induced by this inner product is the energetic norm or A-norma:    xAxx A ,|||| 2  . 

 

Define the energetic functional in the following way: bxxAxxF ,2,:)(  . 

Obviously: 𝐹(𝑥) = 〈𝑥, 𝑥〉𝐴 − 2〈𝑥, 𝑥∗𝑥〉𝐴 =  ||𝑥 − 𝑥∗||
𝐴

2
− ||𝑥∗||𝐴

2 , therefore:   

 

The energetic functional has a unique minimal value,  

and this is reached at the exact solution *x  of the equation   Ax = b. 

 

Thus, the original problem (the solution of a system of equations) is converted to a minimization 

problem. The approximate solution techniques based on this minimization problem are called 

variational methods. 
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Minimization along a direction 

 

Let Ne R  be a given (direction) vector, and let Nx R  be a given approximate solution. 

Minimize the univariate function )(:)( etxFtf  . First, calculate the gradient of F: 

 

hAhhbAxxFbhbxhAhxAhhAxxAx

bhxhxAhAxhxF

,,2)(,2,2,,,,

,2,)(




 

 

which implies that  hbAxhxDF ,2)(  , i.e. )(2)( bAxxDF   

 

Now the minimization of  f  can be performed in a standard way: 

 

0,2,2,)(2),()(  eAetebAxebetxAeetxDftf , 

 

i.e. the derivative vanishes at  
eAe

ebAx
t

,

,
 . Consequently, the improved approximation is: 
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The gradient method 

 

Main idea: the energetic functional F should always be minimized along the steepest descent 

direction i.e. along the direction of the negative gradient vector. 

 

Let nx  be an arbitrary approximate solution of the equation   Ax = b, and denote by bAxr nn :  

the residual vector. Then the improved approximation after minimizing the functional F along 

the direction nr : 

n
nn

n
nn

nn

nn
nnnn r

rAr
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rAr

rbAx
xrtxx 
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,

, 2
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Theorem: The error after the nth step can be estimated as:  

2*
0

max

min2* ||||1|||| A

n

An xxxx 











  

 

However, to apply the method, it is not necessary to know the extremal eigenvalues!  

Computational cost: )( 2NO  in each iteration step.
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The conjugate gradient method 

 

Let A be a self-adjoint, positive definite matrix, and consider the equation  bAx  .  

Let Nx R0  be an arbitrary starting approximation and set bAxr  00 : , 00 : rd  . For every 

,...2,1,0n , define: 
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Theorem:  Without rounding errors, the conjugate gradient method results in  

the exact solution within at most N iteration steps. 

 

That is, in principle, the conjugate gradient method can be classified as a direct method. 
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Eigenvalue problems 

 

An eigenvalue problem is always equivalent to the solution of an equation of higher degree 

(characteristic equation):  

 

)( 0 ssAs             ⇔            det(𝐴 − 𝜆𝐼) = 0 

 

Gershgorin’s theorem: For an arbitrary matrix NNA M , the eigenvalues of A are located  

in the union of the closed circles of the complex plane  

centered at  kka , with radius  



kj

kjk ar ||:  . 

 

Indeed, let   be an eigenvalue with eigenvector 0s . Denote by k the index, for which |𝑠𝑘| is 

maximal, i.e. max|||||| ssk  . For this index k: 
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Eigenvalue problems 

 

Let NNA M  be self-adjoint with eigenvalues 0 ≤ |𝜆1| ≤ |𝜆2| ≤ ⋯ ≤ |𝜆𝑁−1| < |𝜆𝑁| and with 

orthonormal eigenvectors Nsss ,...,, 21 .  

 

The power method: Let 0x  be a starting vector which is not orthogonal to Ns .  

For  𝑛 = 0,1,2, …, define nn Axx  :1 .  

 

Then the sequence of the quotients 
2||||

,

n
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xAx
 (Rayleigh quotients) converges to N . 

 

Indeed, let 



N

j
jjsx

1
0 :  ( 0N ), then 




N

j
j

n
jj

n
n sxAx

1
0 . Hence 




 
N

j

n
jjj

N

k
k

n
kk

N

j
j

n
jjnn ssxAx

1

22

11

1 ||||,, , and, at the same time: 





N

j

n
jj

N

k
k

n
kk

N

j
j

n
jjn ssx

1

22

11

2 ||||,|||| , which implies the theorem. 
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Eigenvalue problems  

 

Let NNA M  be self-adjoint with eigenvalues 0 ≤ |𝜆1| ≤ |𝜆2| ≤ ⋯ ≤ |𝜆𝑁−1| < |𝜆𝑁| and with 

orthonormal eigenvectors Nsss ,...,, 21 .  Applying the power method to the inverse matrix 1A : 

 

The inverse iteration: Let 0x  be a starting vector which is not orthogonal to 1s .  

For  𝑛 = 0,1,2, …, define nn xAx 1
1 : 
  . 

 

Then the sequence of quotients 

nn

n

xxA

x

,

||||

1

2


 converges to 1 . 

 

 

At each step of iteration, one has to solve a system of equations  nn xAx 1  .  

(From computational point of view, the use of the LU decomposition may be advantageous). 
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Eigenvalue problems  

 

Jacobi’s method: Let NNA M  self-adjoint. Define the pair of indices ),( qp  )( qp  , for 

which  || pqa  is maximal outside the main diagonal. Define 
pq

ppqq

a

aa
t

2
:2ctg


 , and  







































1

1

cos.........sin

...1...

.........

...1...

sin.........cos

1

1

:

tt

tt

Q  

Now update the matrix A:   

AQQA *: , 

and repeat the procedure. If the eigenvalues of A are distinct, then the matrix sequence defined 

above tends to a diagonal matrix, the main diagonal of which contains the eigenvalues of A. 
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Numerical Methods 3. Approximation of linear algebraic problems  

 

 

 

 

Linear systems of equations 

 

Direct methods 

 

Iterative methods 

 

Eigenvalue problems 

 

Generalized inverse 
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The Singular Value Decomposition (SVD)  
 

The Singular Value Decomposition (SVD): Every matrix nmA M  can be (non-uniquely) 

decomposed in the form 

 
*USVA  ,     where: 

 

 mmU M , nnV M  are orthogonal matrices; 

nmS M  is a diagonal matrix;  

the non-zero diagonal elements of S (the singular values of A) are  

the positive square roots of the matrix AA* . 
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Generalized inverses of matrices 

 

Let the singular value decomposition of the matrix nmA M  be: *USVA  . Then the matrix  

 

mnUVSA 
  M

*
 

 

is said to be the generalized inverse (Moore-Penrose pseudoinverse) of the matrix A, where if  

 































...

3

2

1

S ,     then   𝑆+ ≔ (

1/𝜎1

1/𝜎2

1/𝜎3    
…

) 

 

 

 

The generalized inverse is uniquely determined, and, if nnA M  is regular, then 1  AA . 
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Generalized solutions of systems of equations 

 

The generalized solution of the equation bAx   is: bAx  :  (always exists and uniquely 

determined). 

 

Theorem: The generalized solution of the equation bAx   minimizes the functional  

 
2||||:)( bAxxF    

 

Moreover, if there are several minimizing vectors, then the generalized solution has the least 

Euclidean norm (the solution in the sense of least squares). 

 

 

The vectors w which minimize the functional 2||||:)( bAxxF  , satisfy the  

Gaussian normal equations: 
 

bAAwA **   
 

 

Thus, the generalized solution can be approximated by some variational (iterative) method. 


