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Interpolation problems

For given locations ¥;,X,,...,.x5 € R" and corresponding values u;,u,,...,uy € R™, find a
function u:R" — R™ such that u(x,)=u, (k=12,...,N).

Fields of application:
e curve fitting;
e surface fitting;
e completion of data;
e data definition for computational models etc.

If n,m>1 (vectorial interpolation problems), then the corresponding values defined at the

interpolation points x;,X,,...,xy € R" are vectors: in this case, some additional conditions are
prescribed for the interpolation vector field, e.g. divergence-free and/or rotation-free property.
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The Lagrangian interpolation

Given: X, X»,...,XN € R locations (interpolation points) and the corresponding values
Uy, Us,...,UN € R. Find: a polynomial Py _4 of degree at most (N — 1), for which
PN_l(xk) = Ug (k = 1,2, ,N)

Lagrange base polynomials:
X — X (X=X )(X=X2)...(x = Xj_1 ) (X = Xj41)...(X=XN)

Ij(x)::]_[ =

2 X)X (X = X)X = X2) (X = Xj_0)(Xj —Xj1)--(Xj —XN)

The interpolation polynomial:

N
Pno1(X) = 22U -15(%)
]=1

The Lagrange interpolation polynomial is unique.

If there existed two interpolation polynomials Py _; and Qy_; (of degree at most (N — 1)), then
their difference would have N roots, therefore Py_; —Qn_1 =0.




The Lagrangian interpolation

Another way to compute the coefficients of the Lagrangian interpolation polynomial:

N .
Suppose that the interpolation polynomial has the form: Py_1(X) = Zaj x1t
j=1

Then, from the interpolation conditions:

N )
Pua(i)=Ya; %) T=u (k=12..,N)
j=1

This is a system of equations with N unknowns. The entries of the matrix are: A; = xg 1 The

matrix is regular (since it is a Vandermonde matrix), therefore the Lagrangian interpolation
polynomial exists and is unique.



The Hermitian interpolation

Given: X, X»,...,XN € R locations (interpolation points) and the corresponding values
ulg'k) eR (i =01,...,m—1). Denote by m:=my +m, +...+ my. Find: a polynomial H,_; of
degree at most (m — 1), for which:

HY (x)=ul? (j=0L..m -1 k=12,.,N)

The Hermitian interpolation polynomial exists and is unique.

m .

The coefficients of the Hermite interpolation polynomial H,,_;(X) = Zaj -x'1 can be
i=1

calculated by solving the following system of equations:

m d] Xll .
HD. (x,) = Zla éx )|X W =u  (j=01..m -1 k=12..N)
|

Special cases:
e my =1 for each index k — Lagrangian interpolation

e N=1, m=m = Taylor polynomial




Two-point cubic Hermitian interpolation

Given: Xg,% € R locations (interpolation points) and the corresponding values ug, Uy, Ug, Uy .
2 3

Find: a cubic polynomial H(x)= A+B -(X_hxoj+c .(X—hxoj +D (x—hxo) (where h

denotes the distance h := x; — x,) , such that:

H(xp) = A = Up
H(x,) =A+B+C+D = y
h-H'(xg)= B = h-ug

h-H'(x)= B+2C+3D = h-y

The solution of the system:

A= ug

B= h-ug
C=-3ug+3u; —2h-ug—h-uy
D= 2upg—-2u;+ h-ug+h-u;




Piecewise cubic Hermitian interpolation

Given: Xg, X1,...,XN € R locations (interpolation points) and the corresponding values

4

! 4
Ug, Uy, Up UG, UL, U -

On each subinterval [x,_1, X ], perform a cubic Hermitian interpolation based on the values
Uy _1, Uk _1, Uy, Ug . The polynomials defined on the different subintervals are connected at the

interpolation points always in a Cl-continuous way, i.e. the first derivative is continuous at the
inner interpolation points.

Remark: The values ug,uy,...,uy € R are unknown in general.

A possible solution: define the derivatives as follows:

uy=0, U=kt Tl (1 N _1), uf :=0. Butthere is a better technique!
0 K N
Xk+1 — Xk—1




Cubic spline interpolation

Given: Xg,X,..-,XN € R locations (interpolation points) and the corresponding values
Uo,ul,...,UN cR.
Find: a piecewise cubic polynomial S such that

S(Xk):uk (k:O,l,...,N)
and the polynomials defined on the different subintervals are connected at the interpolation
points in a C%-continuous way, i.e. even the second derivative is continuous at the inner
interpolation points.

Idea: with properly defined values ug,uq,...,uy € R, perform a piecewise cubic Hermitian
interpolation.

On the subinterval [x,_1,%] (denote by hy_; =X, —X_1):

2 3
X — X X — X X — X
He_1(X)=ay+a k=14 a k=11 +a k=1
= o+a 2| 3|
k-1 = k-1

On the subinterval [X,,X..1] (denote by h, =X, .1 — X, ):

2 3
Hk(X):a0+a1X;Xk+a2(X_ij +a3(X;ij
k




Cubic spline interpolation

From the condition Hy_1(x,) = Hg (X, ), after some algebraic manipulations we obtain:

1u' +(2+2ju’+1u’ 3u + 3 3u+3u (k=1,...,.N-1)
Ukt Ut U =l T S Ukt 5 Uk =L N =
hk_1 he_r by he " h, he s hg he

!

This is a 3-diagonal system for the a priori unknown values uy,...,uy_1.

In case of equidistant interpolation points, where hy = hy = -+ = hy_; = h:

/ F 3 3
U _1 +4Uy +uk+1:—ﬁuk_1+ﬁuk+1 (k=1...,N-1)

where the first and last values ug, uy can be defined arbitrarily.

The cubic spline minimizes the functional
F(u) = f;)N lu"" (x)|%dx

among all functions that satisfy the interpolation conditions and the boundary conditions
u'(xo) =u'y, u'lxy) =uy.

10
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Multivariate interpolation

Given: X{,Xo,...,.XN € R? (locations) and Ug,Us,...,Uyn € R (corresponding values).
We look for a function u (as smooth as possible), for which u(x) =u, (k =12,...,N) is valid.

If the interpolation points are located on a 2D rectangular grid: (xlgl) , xgz)) e R? and the
corresponding values are u, ;j (k=12,..,N, J=12,..,M), then a bivariate Lagrangian
interpolation can be applied:

The Lagrange base polynomials:

M _ @ 2 _ @

el (k@ @y g X XX

g 0 0T rgkxﬁl)—xg) x§ —x{P
q# j

The interpolation polynomial:

N M
P(x)= 2 2.Uk,j Ik, (X)

k=1j=1
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Shepard’s method

Given: Xq,Xo,...,.XN € R? (locations) and Ui,Us,...,uy €R (corresponding values).

N
2 Ujwj (X) 1
u(x) = leil Cwi(x) = 5
> w;(x) | X=X ||
=1

Then |limu(x) = uy|, whenever x —» x;, (k = 1,2, ..., N), i.e. the interpolation conditions are
fulfilled (in the sense of the limit value)

Numerical features:
e Numerically stable; no solution of a system of equations is required,;
e Moderate computational cost (O(N) algebraic operations at each point of evaluation);
e Moderate accuracy.

However:

Both partial derivatives of the Shepard interpolation function vanish at each interpolation point.
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The method of Radial Basis Functions

Given: Xq,Xo,...,.XN € R? (locations) and Ui,Us,...,uy €R (corresponding values).

N
u(x)= > a;@;(x=x;)
j=1

where @4,...,@\ are predefined, spherically symmetric functions (radial basis functions).
The a priori unknown coefficients oy, a,,...,o.p Can be computed by solving the interpolation
equations:

N
ZOLJ'(DJ'(Xk—Xj):Uk (k:l,2,...,N)
j=1

Numerical features:

Very good accuracy;

Solution of a system of equations is required;
Large, dense and ill-conditioned matrices;

High computational cost (O(N 3) algebraic operations).



The method of Radial Basis Functions

Some special cases:

. : : 2 .2
Multiquadrics, MQ: D (x) = \/|| X||* +cj
(¢1,Co,...,CN € R are predefined scaling parameters)

1

/||x||2+c;

Inverse multiquadrics, iMQ: P;(x) =

(¢1,Cy,...,cN €R are predefined scaling parameters)

Thin plate splines, TPS: @ (x):=| x||* log || x|

(no scaling parameters are required)

P
—C7 Il

Gauss functions: D;(x)=¢e
(¢1,Co,...,.cN € R are predefined scaling parameters)




