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Interpolation problems  

 

For given locations n
Nxxx R,...,, 21  and corresponding values m

Nuuu R,...,, 21 , find a 

function mnu RR :  such that  ),...,2,1()( Nkuxu kk  . 

 

Fields of application:  

 curve fitting;  

 surface fitting;  

 completion of data;  

 data definition for computational models etc. 

 

If 1, mn  (vectorial interpolation problems), then the corresponding values defined at the 

interpolation points n
Nxxx R,...,, 21  are vectors: in this case, some additional conditions are 

prescribed for the interpolation vector field, e.g. divergence-free and/or rotation-free property. 



 

3 

 

Numerical Methods 4. Interpolation problems 
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The Lagrangian interpolation 

 

Given: RNxxx ,...,, 21  locations (interpolation points) and the corresponding values 

RNuuu ,...,, 21 . Find: a polynomial 𝑷𝑵−𝟏 of degree at most (N – 1), for which  

𝑃𝑁−1(𝑥𝑘) = 𝑢𝑘  (𝑘 = 1,2, … , 𝑁) 

 

Lagrange base polynomials: 
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The interpolation polynomial: 




 
N

j
jjN xluxP

1
1 )()(  

 

The Lagrange interpolation polynomial is unique. 

 

If there existed two interpolation polynomials 1NP  and 1NQ  (of degree at most (N – 1)), then 

their difference would have N roots, therefore 011   NN QP . 
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The Lagrangian interpolation 

 

Another way to compute the coefficients of the Lagrangian interpolation polynomial:  

Suppose that the interpolation polynomial has the form: 
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Then, from the interpolation conditions: 
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This is a system of equations with N unknowns. The entries of the matrix are: 
1


j
kkj xA . The 

matrix is regular (since it is a Vandermonde matrix), therefore the Lagrangian interpolation 

polynomial exists and is unique. 
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The Hermitian interpolation 

 

Given: RNxxx ,...,, 21  locations (interpolation points) and the corresponding values  

)1,...,1,0(
)(

 kk
i

k miu k R . Denote by Nmmmm  ...: 21 . Find: a polynomial 1mH  of 

degree at most (m – 1), for which: 
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The Hermitian interpolation polynomial exists and is unique. 
 

The coefficients of the Hermite interpolation polynomial 
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calculated by solving the following system of equations: 
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Special cases: 

 1km  for each index k     Lagrangian interpolation 

 mmN  1,1             Taylor polynomial 
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Two-point cubic Hermitian interpolation 

 

Given: R10 , xx  locations (interpolation points) and the corresponding values 1010 ,,, uuuu  .  

Find: a cubic polynomial 
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denotes the distance  ℎ ≔ 𝑥1 − 𝑥0) , such that: 
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The solution of the system: 
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Piecewise cubic Hermitian interpolation 

 

 

Given: RNxxx ,...,, 10  locations (interpolation points) and the corresponding values 

NN uuuuuu  ,...,,,,..., 1010 .  

 

On each subinterval ],[ 1 kk xx  , perform a cubic Hermitian interpolation based on the values 

kkkk uuuu   ,,, 11 . The polynomials defined on the different subintervals are connected at the 

interpolation points always in a 1C -continuous way, i.e. the first derivative is continuous at the 

inner interpolation points. 

 

 

Remark: The values R Nuuu ,...,, 10  are unknown in general. 

 

A possible solution: define the derivatives as follows: 

0:),1,...,1(:,0:
11

11
0 









N

kk

kk
k uNk

xx

uu
uu .   But there is a better technique! 

 

 



 

9 

 

Cubic spline interpolation 

 

Given: RNxxx ,...,, 10  locations (interpolation points) and the corresponding values 

RNuuu ,...,, 10 .  

Find: a piecewise cubic polynomial S such that 
 

),...,1,0()( NkuxS kk    

and the polynomials defined on the different subintervals are connected at the interpolation 

points in a 𝐶2-continuous way, i.e. even the second derivative is continuous at the inner 

interpolation points. 

Idea: with properly defined values R Nuuu ,...,, 10 , perform a piecewise cubic Hermitian 

interpolation.  
 

On the subinterval  ],[ 1 kk xx    (denote by 11 :   kkk xxh ):  
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On the subinterval  ],[ 1kk xx   (denote by kkk xxh  1: ):  
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Cubic spline interpolation 

 

From the condition )()(1 kkkk xHxH   , after some algebraic manipulations we obtain: 
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This is a 3-diagonal system for the a priori unknown values  11,...,  Nuu . 

 

In case of equidistant interpolation points, where ℎ0 = ℎ1 = ⋯ = ℎ𝑁−1 = ℎ: 
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where the first and last values Nuu  ,0  can be defined arbitrarily. 

 

The cubic spline minimizes the functional 
 

𝐹(𝑢) ≔ ∫ |𝑢′′(𝑥)|2𝑑𝑥
𝑥𝑁

𝑥0
   

 

among all functions that satisfy the interpolation conditions and the boundary conditions 

𝑢′(𝑥0) = 𝑢′0 ,    𝑢′(𝑥𝑁) = 𝑢′𝑁. 



 

11 

 

Numerical Methods 4. Interpolation problems 
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Multivariate interpolation 

 

 

Given: 2
21 ,...,, RNxxx  (locations) and  RNuuu ,...,, 21  (corresponding values).  

We look for a function u (as smooth as possible), for which ),...,2,1()( Nkuxu kk   is valid. 

 

If the interpolation points are located on a 2D rectangular grid: 2)2()1(
),( Rjk xx  and the 

corresponding values are jku ,   ),...,2,1,,...,2,1( MjNk  , then a bivariate Lagrangian 

interpolation can be applied: 

 

The Lagrange base polynomials: 
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The interpolation polynomial: 
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Shepard’s method 

 

Given: 2
21 ,...,, RNxxx  (locations) and  RNuuu ,...,, 21  (corresponding values).  
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Then   lim 𝑢(𝑥) = 𝑢𝑘 , whenever 𝑥 → 𝑥𝑘  (𝑘 = 1,2, … , 𝑁), i.e. the interpolation conditions are 

fulfilled (in the sense of the limit value) 

 

Numerical features: 

 Numerically stable; no solution of a system of equations is required; 

 Moderate computational cost (O(N) algebraic operations at each point of evaluation); 

 Moderate accuracy. 

 

However: 

Both partial derivatives of the Shepard interpolation function vanish at each interpolation point. 
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The method of Radial Basis Functions 

 

Given: 2
21 ,...,, RNxxx  (locations) and  RNuuu ,...,, 21  (corresponding values).  
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where N ,...,1  are predefined, spherically symmetric functions (radial basis functions).  

The a priori unknown coefficients N ,...,, 21  can be computed by solving the interpolation 

equations: 
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Numerical features: 

 Very good accuracy; 

 Solution of a system of equations is required; 

 Large, dense and ill-conditioned matrices; 

 High computational cost ( )( 3NO  algebraic operations). 
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The method of Radial Basis Functions 

 

Some special cases: 

 

Multiquadrics, MQ:          
22||||:)( jj cxx   

( RNccc ,...,, 21  are predefined scaling parameters) 

 

Inverse multiquadrics, iMQ:        Φ𝑗(𝑥) ≔
1

√||𝑥||
2

+𝑐𝑗
2
  

( RNccc ,...,, 21  are predefined scaling parameters) 

 

Thin plate splines, TPS :         ||||log||||:)( 2 xxxj   

(no scaling parameters are required) 

 

Gauss functions:          
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( RNccc ,...,, 21  are predefined scaling parameters) 

 


