Interpolations problems
Univariate interpolation methods
Scattered data interpolation

Interpolation problems

For given locations $x_{1}, x_{2}, \ldots, x_{N} \in \mathbf{R}^{n}$ and corresponding values $u_{1}, u_{2}, \ldots, u_{N} \in \mathbf{R}^{m}$, find a function $u: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ such that $u\left(x_{k}\right)=u_{k} \quad(k=1,2, \ldots, N)$.

Fields of application:

- curve fitting;
- surface fitting;
- completion of data;
- data definition for computational models etc.

If $n, m>1$ (vectorial interpolation problems), then the corresponding values defined at the interpolation points $x_{1}, x_{2}, \ldots, x_{N} \in \mathbf{R}^{n}$ are vectors: in this case, some additional conditions are prescribed for the interpolation vector field, e.g. divergence-free and/or rotation-free property.

Interpolation problems
Univariate interpolation methods
Scattered data interpolation

The Lagrangian interpolation

Given: $x_{1}, x_{2}, \ldots, x_{N} \in \mathbf{R}$ locations (interpolation points) and the corresponding values $u_{1}, u_{2}, \ldots, u_{N} \in \mathbf{R}$. Find: a polynomial $\boldsymbol{P}_{\boldsymbol{N - 1}}$ of degree at most $(\boldsymbol{N}-\mathbf{1})$, for which $P_{N-1}\left(x_{k}\right)=u_{k}(k=1,2, \ldots, N)$

Lagrange base polynomials:

$$
l_{j}(x):=\prod_{r \neq j} \frac{x-x_{r}}{x_{j}-x_{r}}=\frac{\left(x-x_{1}\right)\left(x-x_{2}\right) \ldots\left(x-x_{j-1}\right)\left(x-x_{j+1}\right) \ldots\left(x-x_{N}\right)}{\left(x_{j}-x_{1}\right)\left(x_{j}-x_{2}\right) \ldots\left(x_{j}-x_{j-1}\right)\left(x_{j}-x_{j+1}\right) \ldots\left(x_{j}-x_{N}\right)}
$$

The interpolation polynomial:

$$
P_{N-1}(x)=\sum_{j=1}^{N} u_{j} \cdot l_{j}(x)
$$

The Lagrange interpolation polynomial is unique.
If there existed two interpolation polynomials P_{N-1} and Q_{N-1} (of degree at most ($N-1$)), then their difference would have N roots, therefore $P_{N-1}-Q_{N-1} \equiv 0$.

The Lagrangian interpolation

Another way to compute the coefficients of the Lagrangian interpolation polynomial: Suppose that the interpolation polynomial has the form: $P_{N-1}(x)=\sum_{j=1}^{N} a_{j} \cdot x^{j-1}$.
Then, from the interpolation conditions:

$$
P_{N-1}\left(x_{k}\right)=\sum_{j=1}^{N} a_{j} \cdot x_{k}^{j-1}=u_{k} \quad(k=1,2, \ldots, N)
$$

This is a system of equations with N unknowns. The entries of the matrix are: $A_{k j}=x_{k}^{j-1}$. The matrix is regular (since it is a Vandermonde matrix), therefore the Lagrangian interpolation polynomial exists and is unique.

The Hermitian interpolation

Given: $x_{1}, x_{2}, \ldots, x_{N} \in \mathbf{R}$ locations (interpolation points) and the corresponding values $u_{k}^{\left(i_{k}\right)} \in \mathbf{R} \quad\left(i_{k}=0,1, \ldots, m_{k}-1\right)$. Denote by $m:=m_{1}+m_{2}+\ldots+m_{N}$. Find: a polynomial H_{m-1} of degree at most $(\boldsymbol{m}-1)$, for which:

$$
H_{m-1}^{(j)}\left(x_{k}\right)=u_{k}^{(j)} \quad\left(j=0,1, \ldots, m_{k}-1, \quad k=1,2, \ldots, N\right)
$$

The Hermitian interpolation polynomial exists and is unique.
The coefficients of the Hermite interpolation polynomial $H_{m-1}(x)=\sum_{i=1}^{m} a_{j} \cdot x^{i-1}$ can be calculated by solving the following system of equations:

$$
H_{m-1}^{(j)}\left(x_{k}\right)=\left.\sum_{i=1}^{m} a_{j} \cdot \frac{d^{j}\left(x^{i-1}\right)}{d x^{j}}\right|_{x=x_{k}}=u_{k}^{(j)} \quad\left(j=0,1, \ldots, m_{k}-1, \quad k=1,2, \ldots, N\right)
$$

Special cases:

- $m_{k}=1$ for each index $k \Rightarrow$ Lagrangian interpolation
- $N=1, \quad m_{1}=m \quad \Rightarrow$ Taylor polynomial

Two-point cubic Hermitian interpolation

Given: $x_{0}, x_{1} \in \mathbf{R}$ locations (interpolation points) and the corresponding values $u_{0}, u_{1}, u_{0}^{\prime}, u_{1}^{\prime}$.
Find: a cubic polynomial $H(x)=A+B \cdot\left(\frac{x-x_{0}}{h}\right)+C \cdot\left(\frac{x-x_{0}}{h}\right)^{2}+D \cdot\left(\frac{x-x_{0}}{h}\right)^{3}$ (where h denotes the distance $h:=x_{1}-x_{0}$), such that:

$$
\begin{array}{ll}
H\left(x_{0}\right)=A & =u_{0} \\
H\left(x_{1}\right)=A+B+C+D & =u_{1} \\
h \cdot H^{\prime}\left(x_{0}\right)=B & =h \cdot u_{0}^{\prime} \\
h \cdot H^{\prime}\left(x_{1}\right)=B+2 C+3 D & =h \cdot u_{1}^{\prime}
\end{array}
$$

The solution of the system:

$$
\begin{array}{|l|}
\hline A=u_{0} \\
B= \\
C= \\
D= \\
D u_{0}+3 u_{1}-2 h \cdot u_{0}^{\prime}-h \cdot u_{1}^{\prime} \\
\hline
\end{array}
$$

Piecewise cubic Hermitian interpolation

Given: $x_{0}, x_{1}, \ldots, x_{N} \in \mathbf{R}$ locations (interpolation points) and the corresponding values $u_{0}, u_{1}, . . u_{N}, u_{0}^{\prime}, u_{1}^{\prime}, \ldots, u_{N}^{\prime}$.

On each subinterval $\left[x_{k-1}, x_{k}\right]$, perform a cubic Hermitian interpolation based on the values $u_{k-1}, u_{k-1}^{\prime}, u_{k}, u_{k}^{\prime}$. The polynomials defined on the different subintervals are connected at the interpolation points always in a C^{1}-continuous way, i.e. the first derivative is continuous at the inner interpolation points.

Remark: The values $u_{0}^{\prime}, u_{1}^{\prime}, \ldots, u_{N}^{\prime} \in \mathbf{R}$ are unknown in general.
A possible solution: define the derivatives as follows:

$$
u_{0}^{\prime}:=0, \quad u_{k}^{\prime}:=\frac{u_{k+1}-u_{k-1}}{x_{k+1}-x_{k-1}} \quad(k=1, \ldots, N-1), \quad u_{N}^{\prime}:=0 . \quad \text { But there is a better technique! }
$$

Cubic spline interpolation

Given: $x_{0}, x_{1}, \ldots, x_{N} \in \mathbf{R}$ locations (interpolation points) and the corresponding values

$$
u_{0}, u_{1}, \ldots, u_{N} \in \mathbf{R}
$$

Find: a piecewise cubic polynomial S such that

$$
S\left(x_{k}\right)=u_{k} \quad(k=0,1, \ldots, N)
$$

and the polynomials defined on the different subintervals are connected at the interpolation points in a C^{2}-continuous way, i.e. even the second derivative is continuous at the inner interpolation points.
Idea: with properly defined values $u_{0}^{\prime}, u_{1}^{\prime}, \ldots, u_{N}^{\prime} \in \mathbf{R}$, perform a piecewise cubic Hermitian interpolation.

On the subinterval $\left[x_{k-1}, x_{k}\right]$ (denote by $h_{k-1}:=x_{k}-x_{k-1}$):

$$
H_{k-1}(x)=a_{0}+a_{1} \frac{x-x_{k-1}}{h_{k-1}}+a_{2}\left(\frac{x-x_{k-1}}{h_{k-1}}\right)^{2}+a_{3}\left(\frac{x-x_{k-1}}{h_{k-1}}\right)^{3}
$$

On the subinterval $\left[x_{k}, x_{k+1}\right]$ (denote by $h_{k}:=x_{k+1}-x_{k}$):

$$
H_{k}(x)=a_{0}+a_{1} \frac{x-x_{k}}{h_{k}}+a_{2}\left(\frac{x-x_{k}}{h_{k}}\right)^{2}+a_{3}\left(\frac{x-x_{k}}{h_{k}}\right)^{3}
$$

Cubic spline interpolation

From the condition $H_{k-1}^{\prime \prime}\left(x_{k}\right)=H_{k}^{\prime \prime}\left(x_{k}\right)$, after some algebraic manipulations we obtain:

$$
\frac{1}{h_{k-1}} u_{k-1}^{\prime}+\left(\frac{2}{h_{k-1}}+\frac{2}{h_{k}}\right) u_{k}^{\prime}+\frac{1}{h_{k}} u_{k+1}^{\prime}=-\frac{3}{h_{k-1}^{2}} u_{k-1}+\left(\frac{3}{h_{k-1}^{2}}-\frac{3}{h_{k}^{2}}\right) u_{k}+\frac{3}{h_{k}^{2}} u_{k+1} \quad(k=1, \ldots, N-1)
$$

This is a 3-diagonal system for the a priori unknown values $u_{1}^{\prime}, \ldots, u_{N-1}^{\prime}$.
In case of equidistant interpolation points, where $h_{0}=h_{1}=\cdots=h_{N-1}=h$:

$$
u_{k-1}^{\prime}+4 u_{k}^{\prime}+u_{k+1}^{\prime}=-\frac{3}{h} u_{k-1}+\frac{3}{h} u_{k+1} \quad(k=1, \ldots, N-1)
$$

where the first and last values $u_{0}^{\prime}, u_{N}^{\prime}$ can be defined arbitrarily.

The cubic spline minimizes the functional

$$
F(u):=\int_{x_{0}}^{x_{N}}\left|u^{\prime \prime}(x)\right|^{2} d x
$$

among all functions that satisfy the interpolation conditions and the boundary conditions

$$
u^{\prime}\left(x_{0}\right)=u_{0}^{\prime}, \quad u^{\prime}\left(x_{N}\right)=u_{N}^{\prime}
$$

Interpolation problems
Univariate interpolation methods
Scattered data interpolation

Multivariate interpolation

Given: $x_{1}, x_{2}, \ldots, x_{N} \in \mathbf{R}^{2}$ (locations) and $u_{1}, u_{2}, \ldots, u_{N} \in \mathbf{R}$ (corresponding values). We look for a function u (as smooth as possible), for which $u\left(x_{k}\right)=u_{k} \quad(k=1,2, \ldots, N)$ is valid.

If the interpolation points are located on a 2D rectangular grid: $\left(x_{k}^{(1)}, x_{j}^{(2)}\right) \in \mathbf{R}^{2}$ and the corresponding values are $u_{k, j}(k=1,2, \ldots, N, j=1,2, \ldots, M)$, then a bivariate Lagrangian interpolation can be applied:

The Lagrange base polynomials:

$$
l_{k, j}(x):=l_{k, j}\left(x^{(1)}, x^{(2)}\right):=\prod_{\substack{p \neq k \\ q \neq j}} \frac{x^{(1)}-x_{p}^{(1)}}{x_{k}^{(1)}-x_{p}^{(1)}} \cdot \frac{x^{(2)}-x_{q}^{(2)}}{x_{j}^{(2)}-x_{q}^{(2)}}
$$

The interpolation polynomial:

$$
P(x)=\sum_{k=1}^{N} \sum_{j=1}^{M} u_{k, j} \cdot l_{k, j}(x)
$$

Shepard's method

Given: $x_{1}, x_{2}, \ldots, x_{N} \in \mathbf{R}^{2}$ (locations) and $u_{1}, u_{2}, \ldots, u_{N} \in \mathbf{R}$ (corresponding values).

$$
u(x):=\frac{\sum_{j=1}^{N} u_{j} w_{j}(x)}{\sum_{j=1}^{N} w_{j}(x)}, \quad w_{j}(x):=\frac{1}{\left\|x-x_{j}\right\|^{2}}
$$

Then $\lim u(x)=u_{k}$, whenever $x \rightarrow x_{k}(k=1,2, \ldots, N)$, i.e. the interpolation conditions are fulfilled (in the sense of the limit value)

Numerical features:

- Numerically stable; no solution of a system of equations is required;
- Moderate computational cost $(O(N)$ algebraic operations at each point of evaluation);
- Moderate accuracy.

However:
Both partial derivatives of the Shepard interpolation function vanish at each interpolation point.

The method of Radial Basis Functions

Given: $x_{1}, x_{2}, \ldots, x_{N} \in \mathbf{R}^{2}$ (locations) and $u_{1}, u_{2}, \ldots, u_{N} \in \mathbf{R}$ (corresponding values).

$$
u(x):=\sum_{j=1}^{N} \alpha_{j} \Phi_{j}\left(x-x_{j}\right)
$$

where $\Phi_{1}, \ldots, \Phi_{N}$ are predefined, spherically symmetric functions (radial basis functions).
The a priori unknown coefficients $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{N}$ can be computed by solving the interpolation equations:

$$
\sum_{j=1}^{N} \alpha_{j} \Phi_{j}\left(x_{k}-x_{j}\right)=u_{k} \quad(k=1,2, \ldots, N)
$$

Numerical features:

- Very good accuracy;
- Solution of a system of equations is required;
- Large, dense and ill-conditioned matrices;
- High computational cost $\left(O\left(N^{3}\right)\right.$ algebraic operations).

The method of Radial Basis Functions
Some special cases:

Multiquadrics, MQ :
$\left(c_{1}, c_{2}, \ldots, c_{N} \in \mathbf{R}\right.$ are predefined scaling parameters)

Inverse multiquadrics, iMQ :
$\left(c_{1}, c_{2}, \ldots, c_{N} \in \mathbf{R}\right.$ are predefined scaling parameters)

Thin plate splines, TPS:

$$
\Phi_{j}(x):=\sqrt{\|x\|^{2}+c_{j}^{2}}
$$

$\Phi_{j}(x):=\frac{1}{\sqrt{\mid x \|^{2}+c_{j}^{2}}}$
(no scaling parameters are required)

Gauss functions:

$$
\Phi_{j}(x):=\|x\|^{2} \log \|x\|
$$

$\left(c_{1}, c_{2}, \ldots, c_{N} \in \mathbf{R}\right.$ are predefined scaling parameters)

$$
\Phi_{j}(x):=e^{-c_{j}^{2} \cdot\|x\|^{2}}
$$

