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Initial value problems 

 

)()),(,()( 00 Axxxxyxfxy   

00 )( yxy                          (initial condition) 

 

(where f  is a given bivariate functions which satisfies the Lipschitz condition). 

 

Example (dilution of a solution). Consider a container with volume V filled by e.g. salty water. 

Start filling clean water in the container at the top continuously, and let the salty water flow out 

from the container at the bottom. Then obviously the salt solution becomes more and more 

diluted. The process of dilution is described by the following differential equation: 
 

)()( tc
V

Q
tc   

 

where )(tc  is the concentartation of the slt at the time t in the container, Q is the discharge of 

wate, (inflow water volume per time unit).  

Initial condition: 

0)0( cc   

where 0c  is the initial salt concentration at the time 0t . 
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Boundary value problems 

 

)()),(),(,()( 10 xxxxyxyxfxy   

1100 )(,)( yxyyxy               (boundary conditions) 

 

(where f  is a given, trivariate function which satisfies the Lispchitz condition). 

As a boundary condition, the derivatives of  f  or a linear combination of the values and the 

derivatives can also be prescribed. 

 

Example (electrical current in conductors). Consider a thin, long but not necessarily 

homogeneous piece of conductor. Connect a voltage source to the endpoints of the conductor. 

The distribution of the electrical potential along the conductor is described by the following 

differential equation: 
 

(𝜎 ∙ 𝑈′)′ = 0 , 
 

where )(xU  denotes the electrical potential at the point x of the conductor, )(x  is the electrical 

conductivity here. 

The boundary conditions are for instance: 
 

1100 )(,)( UxUUxU   
 

where 10 ,UU  are the electrical potentials at the endpoints of the conductor. 
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Solution principles for initial value problems 

 

Useful tools: 

Taylor formula for univariate functions: 
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Taylor formula for bivariate functions: 
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Computational grid: ),...,1,0(: 0 Nkkhxxk  , where h is the stepsize. 

Goal: to approximate the values of the solution y at the gridpoints only. 

 

1. Approximation of the derivatives by finite differences 

First-order derivative:  

 Forward scheme: 
h

yy
xy kk

k


 1~)(  Error: )(hO , 

since from Taylor’s formula: )()()()( 2
11 hOhxyyhxyxyy kkkkk    

 Backward scheme: 
h

yy
xy kk

k
1~)( 

  Error: )(hO , 

since from Taylor’s formula: )()()()( 2
11 hOhxyyhxyxyy kkkkk    

 Central scheme: 
h

yy
xy kk

k
2

~)( 11  
  Error: )( 2hO , 

since:     )()(
2

1
)()()( 32

11 hOhxyhxyyhxyxyy kkkkkk    

and similarly:    )()(
2

1
)()()( 32

11 hOhxyhxyyhxyxyy kkkkkk    
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Second-order derivative: 

 Central scheme: 
2

11 2
~)(

h

yyy
xy kkk

k
 

  Error: )( 2hO , 

since from Taylor’s formula: 
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11 hOhxyhxyhxyyhxyxyy kkkkkkk    
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)()()( 432

11 hOhxyhxyhxyyhxyxyy kkkkkkk    

Adding the two equalities, we have the proposition. 

 

2. Approximation of the derivatives by integrating the differential equation 


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k
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kk dxxyxfxyxy  , 

and by approximating the integral on the right-hand side by a proper quadrature formula: 

 

Example (utilizing the trapezoidal rule): )),(),((
2

1
111   kkkkkk yxfyxfyy  
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Euler’s method 

 

Model problem:  

)()),(,()( 00 Axxxxyxfxy   

00 )( yxy                          (initial condition) 

 

Computational grid: equidistant, with stepsize h: Nxxxx ,...,,, 210 . 

 

The derivatives of the solution at the gridpoints are approximated by finite differences of first 

order. 

 

Explicit scheme (using the forward scheme): 

),(:)( 1
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k yxf
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    )1,...,1,0(),(:1  Nkyxfhyy kkkk  

 

Implicit scheme (using the backward scheme): 
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Consistency, stability, convergence 

 

Local error terms: )1,...,1,0())(,(
)()(

: 1 


  Nixyxf
h

xyxy
g ii

ii
i  

A method is said to be consistent in pth order, if )( p
i hOg   (independently of i). 

 

 

Global error terms: )1,...,1,0()(:  Niyxye iii  

A method is said to be convergent in pth order, if )( p
i hOe   (independently of i). 

 

 

A method is said to be stable, if the global error can be estimated by the local errors from above:  
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If a method is consistent in pth order and stable, then it is also convergent in pth order. 

 

Euler’s method is convergent in first order. 
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Improvements of Euler’s method 

 

Rewrite the original differential equation is the following form: 

   




1

))(,()()( 1

k
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kk dxxyxfxyxy  

Trapezoidal rule: Using the formula 
2
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  , we have: 
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In another form: 

 

 *
111

*
1

,(),(
2

:

),(:









kkkkkk

kkkk

yxfyxf
h

yy

yxfhyy

 

 

The method is consistent in second order. 
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Midpoint rule: Using the formula 






 


2
)()(

ba
FabdxxF

b

a

 , we have:  
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In another form: 
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The method is consistent in second order. 
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Conservation of the asymptotic stability 

 

Consider the model problem  

Ayy   

 

(with some 0A ). The identically zero function is an asymptotically stable solution of it, i.e. for 

every solution y, the equality 0)(lim 


xy
x

 is valid, since Axeyxy  )0()(  . 

 

Now suppose that h is fixed, and investigate the validity of the limit 0ky  for the values of the 

approximate solution at the gridpoints. 

 

Explicit Euler method:   kkk Ahyyy  :1  

 

The asymptotic stability is not inherited for every h (conditional stability), since 
 

02
2

111 )1(...)1()1( yAhyAhyAhAhyyy k
kkkkk   . 

 

Thus 0ky  for every 0y , if  1|1|  Ah , i.e.   111  Ah . This means that the asymptotic 

stability is inherited only if 

A
h

2
0    
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Implicit Euler method:   11 :   kkk Ahyyy  

 

The asymptotic stability is now inherited for every h (unconditional stability), since 

kkk Ahyyy  1:   implies that:  
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Therefore 0ky  is valid for every (positive) stepsize h.  
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Conservation of positivity 

 

Consider the model problem  

Ayy   

 

(with some 0A ). If the initial value is positive then the solution y is positive everywhere, since 
Axeyxy  )0()( . 

 

Now suppose that h is fixed, and investigate the validity of the inequality 0ky  for the values 

of the approximate solution at the gridpoints provided that 00 y . 

 

Explicit Euler method:   kkk Ahyyy  :1  

 

The positivity is not preserved for every h, since 
 

02
2

111 )1(...)1()1( yAhyAhyAhAhyyy k
kkkkk   . 

 

Thus, 0ky  for every 00 y , if  110  Ah . This means that the positivity is preserved only 

if  

A
h

1
0   



 

16 

 

Implicit Euler method:   11 :   kkk Ahyyy  

 

Not the positivity is preserved for every positive stepsize h, since kkk Ahyyy  1:   implies 

that:  

 

0221
)1(

1
...

)1(

1

1

1
y

Ah
y

Ah
y

Ah
y

kkkk








   

 

Therefore 0ky  is valid for every (positive) stepsize h.  
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Runge-Kutta methods 
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A concrete method is characterized by the following parameters: 
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The parameters should be defined in such a way that the local errors, i.e. the numbers 
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Special Runge-Kutta methods 

 

First order Runge-Kutta method: identical to the Euler method. 

 

Second-order Runge-Kutta methods: the Euler method improved by the trapezoidal of the 

midpoint rule. 

 

A third-order Runge-Kutta method: 
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A fourth-order Runge-Kutta method: 
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The order of the Runge-Kutta methods 

 

 

For a given parameter s, the maximal order that can be achieved: 
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Linear multistep methods 

 

The general form of the linear k-step methods is as follows: 

 

),...,1,0(),(
00

kNiyxfhy
k

j
jijij

k

j
jij  





   

 

The value 0y  is defined by the initial condition, while the values 121 ,...,, kyyy  should be 

defined by a completely different method (e.g. by a Runge-Kutta method). This is the task of the 

so-called starting procedure. 

 

A concrete method is defined by the following parameters:  

 

kkk  ,...,,,,...,,, 1010      (where 0k ), 

 

Define the polynomials which characterize the method: 
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Consistency 

 

The parameters should be defined in such a way that the local errors i.e. the numbers 

   
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 
k
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are of order )( phO , where p is the order of the method. 

 

The order of the method is (at least) p, if one of the conditions is satisfied:  

 

(a) 0...210  pCCCC ,  

where  


k

j
jC

0
0 : ,   



k

j
j

k

j
jjC

00
1

!0

1

!1

1
: ,   



k

j
j

k

j
j jjC

00

2
2

!1

1

!2

1
: ,…,  

  


 






k

j
j

p
k

j
j

p
p j

p
j

p
C

0

1

0 )!1(

1

!

1
:   (error constants)  

(b) the rational function )(/)( zz   approximates the complex logarithm function in (p +1)th 

order around the point  z = 1, i.e. ))1((log
)(

)( 1 pzOz
z

z




. 
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Stability and convergence 

 

 

The method is said to be stable, if the polynomial   satisfies the root condition, i.e.  

if the absolute values of its roots are at most 1,  

and the roots whose absolute values equal to 1, are single roots (with multiplicity 1). 

 

In this case, if the order of the method is p, then the method is convergent in pth order. 

 

 

If the polynomial   satisfies the root condition, then the maximal order of consistency  

that can be achieved:  

 

2 kp  if k is even, and 1 kp , if k is odd. (Dahlquist’s theorem) 
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Linear k-step methods of Adams type: 

 
1)(  kk zzz  

 

 

Explicit methods of order k (Adams-Bashforth methods):  

 

1k : 

),(:1 iiii yxfhyy   

2k : 

)),(),(3(
2

: 111   iiiiii yxfyxf
h

yy  

3k : 

)),(5),(16),(23(
12

: 22111   iiiiiiii yxfyxfyxf
h

yy  

4k : 

)),(9),(37),(59),(55(
24

: 3322111   iiiiiiiiii yxfyxfyxfyxf
h

yy  
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Linear k-step methods of Adams type: 

 
1)(  kk zzz  

 

 

Implicit methods of order (k+1) (Adams-Moulton methods):  

 

1k : 
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2

: 111 iiiiii yxfyxf
h
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: 11111   iiiiiiii yxfyxfyxf
h

yy  

3k : 

)),(),(5),(19),(9(
24

: 2211111   iiiiiiiiii yxfyxfyxfyxf
h

yy  
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Boundary value problems for second-order ordinary differential equations 

 

A model problem:  Let   be a given, positive function, and let q be a nonnegative function: 

 

buau

xxfxuxqxux





)1(,)0(

)10(),()()())()((
 

 

Computational grid: ),...,1,0(: Nkkhxk  , where h is the stepsize: Nh /1: . The second-

order term is approximated by a central scheme: 

 

 111112
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 
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 
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kk uuu
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h
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h
xu   

 

Nuu ,0  are predefined. The remaining ku ’s can be computed by solving a linear system of 

equations: 

 )1,...,2,1()( 2
11

2
111   Nkfhuuqhu kkkkkkkkk   

 

The matrix of the system is tridiagonal (moreover, it is diagonally dominant is each kq  is 

positive), thus, the solution can be performed in a computationally economic way (by O(N) 

algebraic operations). 


