Numerical Methods 5. Numerical solution of ordinary differential equations

Initial and boundary value problems
Euler’s method

Improvements of Euler’s method
Runge-Kutta methods

Linear multistep methods

Boundary value problems for second-order ordinary differential equations




Initial value problems

y'(x) = T(x, y(x)), (Xo <X<Xo+A)
Y(Xg) = Yo (initial condition)

(where f is a given bivariate functions which satisfies the Lipschitz condition).

Example (dilution of a solution). Consider a container with volume V filled by e.g. salty water.
Start filling clean water in the container at the top continuously, and let the salty water flow out
from the container at the bottom. Then obviously the salt solution becomes more and more
diluted. The process of dilution is described by the following differential equation:

, Q
c(l)=——c(t
(t) v (t)
where c(t) is the concentartation of the slt at the time t in the container, Q is the discharge of

wate, (inflow water volume per time unit).

Initial condition:
c(0) =cg

where cg is the initial salt concentration at the time t =0.




Boundary value problems

y'(x) = T(x, y(x), y'(x)), (X0 <X<X)
Y(Xo) =Yo, Y(X) =¥ (boundary conditions)

(where f is a given, trivariate function which satisfies the Lispchitz condition).
As a boundary condition, the derivatives of f or a linear combination of the values and the
derivatives can also be prescribed.

Example (electrical current in conductors). Consider a thin, long but not necessarily
homogeneous piece of conductor. Connect a voltage source to the endpoints of the conductor.
The distribution of the electrical potential along the conductor is described by the following
differential equation:

(c-U") =0,

where U (x) denotes the electrical potential at the point x of the conductor, o(x) is the electrical

conductivity here.
The boundary conditions are for instance:

U(Xg)=Up, U(x)=U;

where Uy, U are the electrical potentials at the endpoints of the conductor.




Solution principles for initial value problems

Useful tools:
Taylor formula for univariate functions:
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Taylor formula for bivariate functions:
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Computational grid: x, =Xy +kh (k=0.1,...,N), where h is the stepsize.
Goal: to approximate the values of the solution y at the gridpoints only.

1. Approximation of the derivatives by finite differences

First-order derivative;

e Forward scheme: |Y'(Xy) ~

Yk+1 — Yk
h

Error: O(h),

since from Taylor’s formula: Yy .1 = Y(X,1) = Y(X¢ +h) =y, + Y (X )h + O(hz)

o Backward scheme: |y'(x,) ~ Yk =Yk | Error: o(h),

h

since from Taylor’s formula: Y, _1 = yY(Xc_1) = Y(Xx —h) =y, — Y (X )h+ O(hz)

e Central scheme: |y'(X, ) ~

Yk+1 — Yk

2h

Error: O(hz),

H !/ 1 14
since: Yiert = Y(es1) = Y04 + 1) = Vi + Y ()N + 2y (x)h® + O(h°)

- - !/ 1 "
and similarly:  yy_g = y(%1) = Y(% —h) = Y =Y ()h+ ~ y"(x)h* +O(h?)



Second-order derivative:

e Central scheme: |y"(x,) ~ yk‘l_zhﬁk Yk Error: O(h?),

since from Taylor’s formula:

[ 1 14 1 m
Yicst = Y1) = Y0+ ) = Y+ Y (x)h +2y (x¢)h? +2y (x)h* +0(h*)

! 1 4 1 "m
Vie-r = Y1) = Y0 =h) = Yie =y (i)h +2 y"(x0)h* = =y (g + O(h)
Adding the two equalities, we have the proposition.

2. Approximation of the derivatives by integrating the differential equation
Xk-+1

y(Xcs1) = YO) = | F(x y(x))dx

Xk
and by approximating the integral on the right-hand side by a proper quadrature formula:

Example (utilizing the trapezoidal rule): yy.1 — Yk :%(f (X Vi) + T (Xe1s Yis))
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Euler’s method

Model problem:

y'(x) = f(x y(x)), (Xo <X<Xo +A)
Y(Xg) = Yo (initial condition)

Computational grid: equidistant, with stepsize h: Xg, X1, Xo,..., XN -

The derivatives of the solution at the gridpoints are approximated by finite differences of first
order.

Explicit scheme (using the forward scheme):

V) xR 00 = =k fos) (k=02 N =)

Implicit scheme (using the backward scheme):

Y (Xk41) ® yk+1h_ e (X Via1) = Vet = Vi N F e Ykar)  (K=0L..,N —1)




Consistency, stability, convergence

Local error terms; g; i= Y(i41) = Y(%) f(x,y(x)  (=01..,N=1)
| h I |

A method is said to be consistent in pth order, if g; =O(hP) (independently of i).

Global error terms: g = y(X) —V; (i=01,...,N-1)
A method is said to be convergent in pth order, if & = O(hP) (independently of i).

A method is said to be stable, if the global error can be estimated by the local errors from above:

-1
e [<C -[|e0 [+h Yl g; |] (i=01...,N -1

]=0

If a method is consistent in pth order and stable, then it is also convergent in pth order.

Euler’s method is convergent in first order.
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Improvements of Euler’s method

Rewrite the original differential equation is the following form:
Xk+1

Y(Xe1) = Y(xi) = [ (% y(x))dx

Xk

b
Trapezoidal rule: Using the formula [F(x)dx~ (b—a)- F(a)J2r F(b)
a

. we have:

h
Yk+1 = Yk +§(f (X Vi) + T (Xears Vi + 0 (X, y))

In another form:

Viar = Y +h- T4 Yi)
= v+ ci1)
Vi = Yie + 5 f (X Yi) + F (Xeqr Vs

The method is consistent in second order.
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b
Midpoint rule: Using the formula | F(x)dx = (b—a)- F(aij , we have:
a

h
Yk+1 = Yk +hf (Xei1720 Y A f (X, Yk))

In another form:

h
Yirrr2 =Yk T2 f Xk, Yk)

Y1 =Yk +hfF (Xe 1172 Ykr1/2)

The method is consistent in second order.
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Conservation of the asymptotic stability

Consider the model problem
y'=-Ay

(with some A > 0). The identically zero function is an asymptotically stable solution of it, i.e. for

every solution y, the equality lim y(x) =0 is valid, since y(x) = y(0)- e ™
X—>+00

Now suppose that h is fixed, and investigate the validity of the limit y, — O for the values of the
approximate solution at the gridpoints.

Explicit Euler method: Vi1 = Yk — Ahyy

The asymptotic stability is not inherited for every h (conditional stability), since

Vi = Yko1 — Al = L— Ah)y, 1 = @— Ah)? Y, =...= (1 Ah)¥ y.

Thus y, — 0 for every yq, if |1- Ah|<1,i.e. —1<1- Ah<1. This means that the asymptotic
stability is inherited only if

O<h<E
A
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Implicit Euler method: Vi1 =Yk — Ay g

The asymptotic stability is now inherited for every h (unconditional stability), since
Yk = Yk—_1 — Ahy, implies that:

1 1 1

= y_ :—y_ =...=
1+ Ah ¥ (1+ Ah)? k=2

Yk k Yo

(L+ Ah)

Therefore y, — 0 is valid for every (positive) stepsize h.



Conservation of positivity

Consider the model problem

/

y' =—Ay

(with some A > 0). If the initial value is positive then the solution y is positive everywhere, since
y(x) = y(0)-e~™.

Now suppose that h is fixed, and investigate the validity of the inequality y, > 0 for the values
of the approximate solution at the gridpoints provided that yy > 0.

Explicit Euler method: Yk+1 = Yk — Ahyy

The positivity is not preserved for every h, since

Vi = Yk_1 — Ahy_1 = 01— Ah)y, 3 = @ Ah)?y, 5 =...= (1— Ah)¥ y,.

Thus, y, >0 for every yy >0, if 0<1— Ah<1. This means that the positivity is preserved only
If

O<h<l
A
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Implicit Euler method: Vi1 =Yk — Ay g

Not the positivity is preserved for every positive stepsize h, since yy =Yy, _1 — Ahy, implies
that:

I T S
1+ AN a2 0

« Jo

Yk ok
1+ Ah)

Therefore y, >0 is valid for every (positive) stepsize h.
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Runge-Kutta methods

k= f(Xi, ¥i)
Ko =T (X +h-ay,yj +h-byky)
k3 = f(Xi -|-h'a.3,yi +h'b31k1+h'b32k2)

Ks =T (Xj +h-ag,yj +h-bgky +h-bgoky +...+h-bg ¢ 7Kg 1)
Yiaa =Y+ h'(C1k1+C2k2 +...+ CSkS)

A concrete method is characterized by the following parameters:

s
ay,83,...,
O YRR VRO P M VURL 7% B VT MR (N T ' TR NP
C1/Cauenn Cs

The parameters should be defined in such a way that the local errors, i.e. the numbers
y(Xi41) — y(Xi)
h

S
— > Cjk; are of O(hP), where p is the order of the method.
j=1
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Special Runge-Kutta methods
First order Runge-Kutta method: identical to the Euler method.

Second-order Runge-Kutta methods: the Euler method improved by the trapezoidal of the
midpoint rule,

A third-order Runge-Kutta method:

h h
a=Ten Wk le= TG+ 2+ ola) s Ve i b = el = 2n-le)

h
Yier =i+ (kg +4ky +k3)

A fourth-order Runge-Kutta method:

h h
ky = T (X, Yi), Ko ::f(xi+§,Yi+§k1),
h h
k3::f(xi+§,yi+§k2), kg = f(x; +h,y; +h-kg)

h
Vit =Y +6'(k1 + 2Ky +2k3 +ky)
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The order of the Runge-Kutta methods

(=5 (s=1,2,3,4)
|<s-1 (s=567)
P=lcs_2 (s=89)
| <s-3 (s>10)

For a given parameter s, the maximal order that can be achieved:
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Linear multistep methods

The general form of the linear k-step methods is as follows:
k k _
2. iYirj =h 2Bt (X vi+j)  (=0L..,N-k)
j=0 j=0

The value yj is defined by the initial condition, while the values vy, y,,...,Yx_ should be
defined by a completely different method (e.g. by a Runge-Kutta method). This is the task of the
so-called starting procedure.

A concrete method is defined by the following parameters:
k, o, 1y 0 ﬁo,ﬂl,...,ﬂk (Where O -‘ﬁO),

Define the polynomials which characterize the method:

k . k .
p(2)=Ya;z), o(2)= 3 B’
j=0 j=0
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Consistency

The parameters should be defined in such a way that the local errors i.e. the numbers
1 k k

gi = 2 aiY(Xiyj)— 2B (Xipj Y(Xikj))
j=0 j=0

are of order O(hP), where p is the order of the method.

The order of the method is (at least) p, if one of the conditions is satisfied:

(a) CO =C1=C2 =...=Cp =0,

nere Co'= 3 oj, Cy=2 3 joj—= 3 By, Cr=n 3 j2aj—+ 3 jp
where Coi= Y a;,Ci== Y joi—— L Co == jfai—= Y iBi,...,
j=0 J -0 J O!jzoJ 2'i=0 J -0 J
k k
Cp —iz jP 1 > jp‘lﬁj (error constants)

_ ol —
Plico” ' (p-D!j=o
(b) the rational function p(z)/o(z) approximates the complex logarithm function in (p +1)th

order around the point z=1, i.e. % =logz+0O((z-1) IC’”).
o(z
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Stability and convergence

The method is said to be stable, if the polynomial p satisfies the root condition, i.e.

if the absolute values of its roots are at most 1,
and the roots whose absolute values equal to 1, are single roots (with multiplicity 1).

In this case, if the order of the method is p, then the method is convergent in pth order.

If the polynomial p satisfies the root condition, then the maximal order of consistency
that can be achieved:

p<k+2ifkiseven,and p<k+1, ifkis odd. (Dahlquist’s theorem)
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Linear k-step methods of Adams type:

p(2)= 2% — 241

Explicit methods of order k (Adams-Bashforth methods):

k =1:
Yiaa =VYi +h- f(X,Yi)
k =2:
h
Yie1 =Y +§(3f (X, Yi)— £ (X_1,¥i1))
k =3:
h
Vit = Vi +l—2(23f (%, ¥i) =16 f (Xi_1, Yi—1) +5F (Xi_2, ¥i—2))
k =4:

h
Yis1 = Yi +ﬂ(55f (Xi Yi) =59 (Xi_1, Vi) +37F (Xi_2, ¥i_2) =9 f (Xi_3, Yi_3))
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Linear k-step methods of Adams type:

p(2)= 2% — 241

Implicit methods of order (k+1) (Adams-Moulton methods):

k =1:
Vi1 = Y] +g(f (Xit1s Yiea) + £(X5, Vi)
k=2:
Vi1 =VYi +%(5f (X1, Yier) +8 1 (X, ¥i) = T (X1, Yio1))
k =3:

h
Vi1 = Vi +ﬂ(9f(xi+1’ Vi) T19F (X, ¥;) =5 F (X1, Vi) + F(Xi_2, Yi—2))
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Boundary value problems for second-order ordinary differential equations
A model problem: Let o be a given, positive function, and let g be a nonnegative function:

— (o (x)u'(x))" + a(x)u(x) = f(x), (0<x<1)
u(@=a, u@=>b

Computational grid: x, :=kh (k=0,,...,N), where h is the stepsize: h:=1/N. The second-
order term is approximated by a central scheme:

) 1 U1 —U U, — Uy _ 1
(ou’)'(x¢) ~ E(Gku%—ak . n . 1) =2 (Ok+1Uk+1 — (T4 + TR U + 01Uk 1)
Ug,Uy are predefined. The remaining Uy ’s can be computed by solving a linear system of
equations:
2 2
— Ok Uk-1 + (041 + 0k + N0 UK — o Uk =" T (k=12,...,N-1)

The matrix of the system is tridiagonal (moreover, it is diagonally dominant is each ¢y is

positive), thus, the solution can be performed in a computationally economic way (by O(N)
algebraic operations).
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