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Vector calculus, summary. Differential operators

Let u:R" — R be a differentiable scalar function, and let E : R"™ — R" be a differentiable
vector function.

u o .’auJ (vector function)

OX; OXp  OXq

The gradient of the function u: gradu = (

The divergence of E = (E,E,,....E,): diVE = Oy + O3 +...+ %Eq (scalar function)
6X1 8X2 8Xn
The rotation of E :=(E;, E,, E3): rotE = OBy _OE; OBy OBg OBy 0O& (vector)
6X2 8X3 6X3 GX]_ 8X1 6X2
2 2 2
The Laplace operator: Au = 0 121 + 0 lZJ + .t a—g (scalar)
8X1 8X2 8Xn

e rotgradu=0
e diviotE=0
e divgradu=Au

div(E-u)=(divE)-u+E-(grad u)




Vector calculus, summary. Fundamental integral theorems

Divergence theorem of Gauss: ~ [divEdQ={E-ndl
0 r

Corollary: [AudQ = §6u
O on




Vector calculus, summary. Fundamental integral theorems

Divergence theorem of Gauss: ~ [divEdQ=§E-n dI
0 r

Corollary: [AudQ =

fAudQ = [divgrad udQ = {(grad u)-ndl’ = { —dI’
Q Q r



Vector calculus, summary. Fundamental integral theorems

Green’s first theorem:  [(Au)vdQ =—[(gradu)-(gradv)dQ + a—uvdl“
Q O ron




Vector calculus, summary. Fundamental integral theorems

Green’s first theorem:  [(Au)vdQ =—[(gradu)-(gradv)dQ + a—uvdl“
Q O ron

Let E :=(grad u)-v, then
div E =div((grad u)v) = (div grad u)v + (grad u) - (grad v) = (Au)v + (grad u) - (grad v).
Applying the divergence theorem, we have:

[(Au)vdQ =—[(grad u) - (grad v) dQ + [div((grad u)v) dQ =
Q 0 9

—[(grad u) - (grad v) dQ +§ (grad u)v-ndI’ = — [ (grad u) - (grad v) dQ +§8—uvdr
Q r Q ron



Vector calculus, summary. Fundamental integral theorems

Green’s second theorem: [(Au)vdQ — I(Av)u dQ = ;f— vdl — §—u dr
0 ron ron




Vector calculus, summary. Fundamental integral theorems

Green’s second theorem: [(Au)vdQ — j(Av)u dQ = ;f— vdl — §—u dr
0 ron ron

According to Green’s first formula:
[(AuWVQ = — [(grad u) - (grad v) d +§ M vdr
O O ron

Swapping the roles of u and v:
[(AV)udQ =—[(grad v) - (grad u) dQ +§@ udl’
0 O ron

Substituting the two equations, we have the theorem.




Vector calculus, summary. Fundamental integral theorems

Green’s third theorem (in 2D):

) =-1 Y u(y)d, ~5. gl x-yI (y)dr 5. [09 1 x=yl AUy,

Remark: the function defined by V (y) :=log || X — y ||| is harmonic everywhere (provided that
y=X),l.e. AV =0.
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Partial differential equations and auxiliary conditions

Elliptic equation: |Au = f (Poisson equation; if f = 0, then Laplace equation)

More general elliptic equation: [divogradu = f

Examples:

o steady-state heat flow;

e distribution of electrical potential,

e seepage through porous media;

e wind-induced flow in shallow lakes;
etc.

Convection-diffusion-reaction equation: |v-gradu —divegradu+d-u=f

Examples:

e steady-state transport processes;

e contaminant propagation in flow/gas;
etc.

11



Partial differential equations and auxiliary conditions

Parabolic equation: %ltJ —DAu = f| (diffusion equation)

More general parabolic equations: Zt—u —divogradu = f

Convection-diffusion equation: aat_u +Vv-gradu—divogradu = f

Examples:

¢ time-dependent transport processes;

¢ unsteady contaminant propagation in flow/gas;
etc.
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Partial differential equations and auxiliary conditions

o°u

Hyperbolic equation: 6—2 —C
t

2Au = f

Example:
e Wwave propagation;

(wave equation)

13



Auxiliary conditions for elliptic equations: boundary conditions

e U is prescribed along the boundary of the domain (1. or Dirichlet boundary conditionl)

) 2—“ Is prescribed along the boundary of the domain (2. or Neumann boundary condition)
n

e a linear combination of u and 2—“ Is prescribed along the boundary of the domain (3. or
n

Robin boundary condition)

Along different pieces of the boundary, different types of boundary condition can also be
defined (mixed boundary condition). However, at each point of the boundary, exactly one
boundary condition should be prescribed.

If a part of the domain is a priori unknown, the situation is much more complicated and makes
the problem nonlinear.

Free boundary problems

14



Free boundary problem - the classical dam problem

u: velocity potential:  Au=0 inQ

ulp, =Hy, ulr,=Hy, u(xy)|lr, =y (Dirichlet conditions)
Z—Z lr, = 0 (Neumann condition),

At the free surface: u(x,y)|r =y, and Z—Z Ir=0

[" (free surface)

[, (seepage face)
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Auxiliary conditions for parabolic and hyperbolic equations: initial and boundary
conditions

With respect to the spatial variables: boundary conditions (may be time-dependent)

With respect to the time variable: initial condition:

e U is prescribed at the initial moment t =t; (parabolic equations)

e Uand (Z—l: are prescribed at the initial moment t =t (hyperbolic equations)

In general, the above partial differential equations supplied with the above auxiliary
conditions have a unique solution.
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Methods for elliptic equations
The Fourier method for the Poisson equation

Model problem: |—Au= f| inthe rectangle (0,a)x(0,b) < R’ [u=0

Step 1: Express the function f in terms of sinusoidal Fourier series:

f(x,y)= Z chl sin knx sin 47
a

k=1j=1 b

The Fourier coefficients:

ab :
i” f (X, y)sm nx sin ng dydx

on the boundary.
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Methods for elliptic equations
The Fourier method for the Poisson equation

Step 2: Using the same Fourier coefficients calculated in the previous step, define the following
function:

u(x,y) = ZZ 5 Sin I(m(sin Iy

_1J_1 +j T a b
2 b2

a

This function solves the model problem, since:

2 2 - 2 2 .2 2 :
A(sm k—sm %) [asm k]smjgy+[8 sin ngjsinknxz[—k 7; 1T Jsin knxsin Iy

a ox°  a oy? a a b2 a b
which implies
k2n? jznzj kX Jﬂ?y o . Jny
— Au(X, 27 Isin Ci sm X sin = f (X,
(x.¥)= Z_lljglkz 2 jZTEZ (az " p2 a b Z_llél a b (x.Y)
a2 b2

Along the boundary of the rectangle, u =0, since at these points: sin nx sin ng =0.
a
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Methods for elliptic equations
The Fourier method for the Poisson equation

Remarks:
e The calculation of the Fourier coefficients as well as then evaluation of the Fourier series
can be performed by using the Fast Fourier Transform (FFT) algorithm, which significantly
reduces the computational complexity.

e However, the method can be applied for rectangular domains (a similar approach can be
constructed for some very special domains e.g for circles).

e The method can be applied for the Poisson equation (a similar approach can be constructed
for some very special elliptic equations).

20



Methods for elliptic equations
Finite difference methods

Model problem: —Au=1f inadomain Qc R?, uis prescribed along the boundary.

| Main idea: Define an equidistant grid in the domain, and approximate the
derivatives by finite difference schemes.

~UE_2UC+UW UN—ZUC+U8_UN +UW +US +UE—4UC
(Au) + =
C 2 2 2

h h h

Thus, for the gridpoint C, a discrete equation can be written:

4uc —UpN —Uy —Ug —UE :hzfc

This is the case for every gridpoint located in the interior of the domain. At the boundary
gridpoints, u is prescribed (boundary condition).

wolC e The Laplace operator can be approximated by the five-point central scheme:
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Methods for elliptic equations
Finite difference methods

Discretization of the Neumann boundary condition M _ V.

N

Naive solution (first-order approximation):

Z whence, for the boundary point C:

An improved (second-order) approximation:

on

OUc  Uc —Uy
on h |

UC —UW =h°VC

4UC —2UW — U —US :hzfc +2hVC
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Methods for elliptic equations
Finite difference methods

aZUC aZUC

= — — fc, whence

ayZ

Zuc Uy —2Uc + Ug

ayZ h2

2
by =Ue — M 19Ue 2 a3y g

OX 2 ox? ox?

2

by =ue —MCp_10%e 2 Ly p2 63

OX 2 oy? 2
aZUC ) 0

,~ can be approximated by a second-order scheme:

oy

aUC 1 1 2 3
Uy =Uc ——h—-=(uy —2uc +Ug)—=Tch“+0(h
w =lc —— 2(N c +Us) , Te (h~)
whence:

OUc  Uc —Uy

UN'—ZUC'+US

OX h

2h

—%fCthO(hz)
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Methods for elliptic equations
Finite difference methods

Numerical features:
e The method leads to a linear system of equations with large but sparse matrix.
e Direct methods: the computational cost may be extremely high..
e Simple iterative methods are generally slow.

e The approximation of the boundary is rough.

The main problem: a fast solution technique for the appearing linear system.
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Methods for elliptic equations
Finite volume methods

Model problem: —Au=1f inadomain Qc R? uis prescribed along the boundary.

Main idea: Define a cell system in the domain and integrate the differential
equation over each cell C:

ou
&‘;AU dQ = 1—:[ andrc

. Now the integrals of the normal derivatives taken along the cell sides (the
fluxes) are to be approximated by e.g. cell-centered difference schemes:

[AudQ =~ f dQ~-h*f¢
C C

Uy —U Uy — U Ug —U
ja_udpc~uh+uh+uh+

Ug —Uc
——h=up +Uy +Ug +Ug —4U
on h h > ¢

I'c

Thus, the discrete equation belonging to the cell C:  |[4uc —uy —Uy —Ug —Ug = h? fcl,
which is valid for each cell located in the interior of the domain. For the cell sides located on the
boundary, u is prescribed as a boundary condition.
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Methods for elliptic equations
Finite volume methods

e The method leads to an algebraic system with large and sparse matrix. It is not easy to
construct an efficient solution algorithm. However:

e Non-rectangular cells can also be applied, which makes it possible to fit the boundary in a
more precise way.

e Only first-order derivatives (fluxes) have to be approximated.
e The discretization of the Neumann boundary condition is much simpler.

For instance, if the eastern side of the cell C fits to boundary, and here Z—u = Vg Is prescribed,
n

then the flux through the eastern cell side can be calculated:

| %“drC ~ N ;”C h 4w ;“C R R
e on

h :UN +UW +US —3UC +VEh

Thus, the discrete equation belonging to the cell C is as follows:

3UC —Un — Uy —Ug Ihzfc +VEh
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Methods for elliptic equations
Multigrid methods

Model problem (linear): Au =f
Equivalent form (suitable for iteration): u=Bu+g
(Generally, it is a simple Jacobi or Seidel iteration.)

Main ideas:
e multi-level discretization;
e smoothing (with Jacobi or Seidel iteration)
e improvement based on the residual equation:
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Methods for elliptic equations
Multigrid methods

Model problem (linear): Au =f
Equivalent form (suitable for iteration): u=Bu+g
(Generally, it is a simple Jacobi or Seidel iteration.)

Main ideas:
e multi-level discretization;
e smoothing (with Jacobi or Seidel iteration)
e improvement based on the residual equation:

Let U be an approximate solution of the equation Au = f. Then the exact solution u can be
expressed in the form u=U + w,where the correction term w is the solution of the residual
equation:

Aw=f — AU

If the computation of w is not exact (generally this is the case), then we obtain a new — and
hopefully better — approximation of the solution.
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Methods for elliptic equations
Two-grid method

Let X be a coarse grid with stepsize H, and let X,, be a fine grid with stepsize h.

Discretized problems: Ay = Ty and Ayuy = fy
Similarly: U, =Bhup+9,  and Uy =ByUy + 0.

Inter-grid transfer operators: R: Xy, — Xy (restriction to the coarse grid),
P: Xy — X}, (prolongation to the fine grid)

The two-grid algorithm:

e Pre-smoothing: perform Uy, == B, U,, + g, several times

e Coarse grid correction: Uy, := Uy, + Pwy, where Aywy =R(f, — AyUp)

e Post-smoothing: perform Uy, = B,U;, + gy, several times
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Methods for elliptic equations
Multigrid methods

Let X; < X, <...c X| be several grids embedded to each other ( X; is the coarsest, X is the
finest grid).

Discretized problems: Ay = fi
and similarly: U, =Bu +9¢ (k=1,2,...,L)

The inter-grid transfer operations: Ry : X, — X\ _;  (restrictions)
B : Xx_1 = Xy (prolongations).
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Methods for elliptic equations
Multigrid methods

Let X; < X, <...c X| be several grids embedded to each other ( X; is the coarsest, X is the
finest grid).

Discretized problems: Ay = fi
and similarly: U, =Bu +9¢ (k=1,2,...,L)

The inter-grid transfer operations: Ry : X, — X\ _;  (restrictions)
B : Xx_1 = Xy (prolongations).

Cascade method:

In the coarsest level, the discretized problem has to be solved exactly:

Ul = Afl__l fl

In the finer levels, the approximate solution transferred from the coarse level is improved:

o U, =RU_4 (transfer from the coarser level)
o U, =Byl +9g, (improvement by smoothing iterations) (k=2,3,...,L)
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Methods for elliptic equations
Multigrid methods

Let X; < X, <...c X| be several grids embedded to each other ( X; is the coarsest, X is the
finest grid).

Discretized problems: Ay = fi
and similarly: U, =Bu +9¢ (k=1,2,...,L)

The inter-grid transfer operations: Ry : X, — X\ _;  (restrictions)
B : Xx_1 = Xy (prolongations).

e Multigrid cycles (MGC): iterative technique;
e Full multigrid algorithm (FMG): non-iterative technique
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Methods for elliptic equations
Multigrid methods

Recursive definition of the multigrid cycle:

In the coarsest level, the discretized problem has to be solved exactly:

Ul = MGC(]., Ul, fl) = Aﬂ__l fl

In the finer levels:

transfer for the previous level: Uy =B .U, _4

pre-smoothing: Uy = Byu, + g, a few times

compute the residuum: n, = f, — AUy

perform a multigrid cycle (only once (V-cycle) or twice (W-cycle)) for the residual
equation in the next coarser level: w,_1 = MGC(k -1, w_1, R 1) . The strating

approximation can be zero.
coarse grid correction: Uy = Uy + B.W_4
post-smoothing: MGC(k, Uy, f) = B, Uy + gy
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Methods for elliptic equations
Multigrid methods

Full multigrid algorithm, recursive definition:

In the coarsest level, the discretized problem has to be solved exactly:
0, = FMG(, f)) = AL,

In the finer levels:

o Uy =R (FMG(k-1, f4))
e FMG(k, f):=MGC(K, 0, f))

34




Methods for elliptic equations
Multigrid methods

Remarks:

e The aim of the smoothing procedure is to efficiently reduce the high-frequency error
components (and not to assure a fast convergence). The low-frequency error components
are reduced by coarse grid correction.

e The number of the necessary arithmetic operations is proportional to the first power of the
unknowns.

e The approach can be generalized also for nonlinear problems (Full Approximation
Scheme).
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Methods for elliptic equations
Variational methods, finite element methods

Model problem: —Au=f inadomain Qc R?, u=0 along the boundary.

Let ¢q,0,,...,¢ be given basis functions, and let vy, w,,...,y be given test functions, which

also vanish on the boundary.

N
Seek the solution in the form u = Zuj - ¢ j . Multiplying both sides by v and integrating over
j=1
the domain:
N
duj-|grade; -gradyy dQ= | f -y, dOQ (k=12,...,N)
= O Q

No second-order derivatives occur!
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Methods for elliptic equations
Variational methods, finite element methods

Numerical features:

e The method results in a system with large but sparse matrix (provided that the basis and
test functions are properly chosen; practically their support should be small).

e Direct solution techniques lead to extremely high computational cost.
e The boundary can be approximated in a sufficiently exact way.

e However, the definition of a sufficiently fine element structure is a quite difficult subtask.

37



Methods for elliptic equations
Variational methods, finite element methods

38



Methods for elliptic equations
The boundary element method

Model problem: AU =f inadomain Qc R? supplied with mixed boundary conditions:
U is prescribed in a part I'; of the boundary;
along the remaining part I', of the boundary, the normal derivative oU /on is prescribed.

Third Green’s formula: denote by u:=U |, Vvi= %—U |, then in every inner z point of Q:
n

U(Z):—l (Z—Y)'nzy
rllz=yll

27

1 1
u(y)dry — - flog | z—y [l v(y)dly +_[log [l z-y|-f(y)dQ,
r Q

The terms in the righ-hand side: double layer potential, single layer potential, and logarithmic
potential.

Main idea: Let xeI" be e point of the boundary. Letting z — x, compute the limit of both
sides. Thus, we obtain an integral equation, in which the unknown functions (u and v) are
defined on the boundary.
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The boundary element method

The logarithmic and the single layer potentials are continuous functions (with respect to z).

If u is continuous, then the double layer potential has a jump at the boundary, moreover:
u(y)dry = {

X | z=y| rllx=yl

where o(X) is the inner angle of the boundary at the boundary point x.

40




The boundary element method

The boundary functions u and v satisfy the following boundary integral equation:

au+ Ku—-Rv=—Lf

where

(Xx=y)-n
2

(Ku)(x) = § “u(y)dry,

rlx=yll
(RV)(X):=flog | x—y[lv(y)dly,  (Lf)(x):=[log | x -yl f(y)dQ,
T O

41




The boundary element method

The boundary functions u and v satisfy the following boundary integral equation:

au+ Ku—-Rv=—Lf

where

(Xx=y)-n
2

(Ku)(x):= §

rlx=yll
(RV)(X):=flog | x—y[lv(y)dly,  (Lf)(x):=[log | x -yl f(y)dQ,
T O

Lu(y)dry,

Indeed, performing the limit z — x, we obtain:
1 (X=y)-ny 1 1
u(x) = - >-u(y)dry +2_U(X) (2r—a(x) -, flog |l x—y[v(y)dry +
rilx=yll 4 r

1
+27[£I)|09 I'x=yl f(y)dQ,
and hence the boundary integral equation follows.
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Numerical solution of the boundary integral equation by collocation

Let ¢, ¢,,....,0ny D€ given boundary functions, and let X, X,,..Xy be given boundary points

(collocation points hereafter). The simplest choice: the boundary is divided into N parts by some
boundary points, and ¢, is defined as the characteristic function of the kth part, i.e. ¢, is

identically equal to 1 on the kth part and zero elsewhere. The kth collocation point can be
defined as the midpoint of the kth part.

Now let us seek the functions u and v as a linear combination of these functions:

Substituting these expressions into the boundary integral equation and requiring the equality at
the collocation points X, X»,.. Xy , We obtain a linear system of equations for the coefficients:

N N
Uy + _ZlKijj — _ZlejVj =—Lf (xy) (Kyj =(Koj)(Xc),  Ryj=Rep;) (X))
j= j=

(k=12,...,N). This system consists of N equations. The boundary conditions give additional N
equations.
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The boundary element method
Numerical features

e The (approximate) solution of the boundary integral equation requires boundary points
only. A discretization of the domain is not necessary.

o After discretizing the boundary integral equation, the size of the resulting system of
equations is much smaller than in the case of finite differences. However, the matrix of the
system is densely populated, generally nonsymmetric, and sometimes it is ill-conditioned.

e The multigrid technigue can also be applied here, and reduces the computational cost
further.
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Methods for elliptic equations
The method of fundamental solutions

Mode problem: AU =0 inadomain Qc R supplied with mixed boundary conditions:
U is prescribed along a part I'; of the boundary;

along the remaining part I', of the boundary, the normal derivative U /on is prescribed;

Let X1, X5,...,XN be predefined exterior points (source points);
Let X¢, X5,....Xm €11, Xmats XMa2.--- XN € be predefined boundary collocation points.
Consider the function

D(x) :=2ilog | x|]| (fundamental solution), then A®=0 (x # 0)
T

Let us look for the solution in the following form:
N ~
U(X)= 2 aj®(x-X;)
j=1

The a priori unknown coefficients can be calculated by enforcing the boundary conditions.
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Methods for elliptic equations
The method of fundamental solutions

The a priori unknown coefficients can be calculated by enforcing the boundary conditions:

N
U(x) = _Zlajd)(x—ij)
=

N
2.
ia

N

_ZlajCD(xk - Xj)=U(x) (k=12,...,M)

J:

oD - oU

— (X, = X;)=—-(X k=M +1M +2,...,N
an(k i) ank(k) ( )

k
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The method of fundamental solutions
Numerical features

The method needs boundary collocation points and some external source points only.
Neither domain nor boundary discretization (by e. g. grid or element structures) is required.

It can be programmed in an extremely simple way.

The matrix of the resulting system is fully populated and non-symmetric in general.

In many cases, the matrix of the system is extremely ill-conditioned. The greater the
distance of the source points from the boundary, the higher the condition number of the
matrix.
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Methods for time-dependent problems
Fourier’s method

Model problem: Z—l:— DAu = f in the rectangle (0,a) x (0,b) c R

Boundary condition: u =0 along the boundary (for every t >0).
Initial condition: u(0,x,y)=ug(x,y).

Step 1: Express the function f in terms of sinusoidal Fourier series for every t > 0:
f(t,xy)= Z chj (t)sin —sm Jmy
k=1j=1 b
Step 2: Express also the initial condition in terms of sinusoidal Fourier series:

knx . Jmy

Ug (X, y) = ZZakJ sin ——sin
k=1j=1 a b

Step 3: Look for the solution in the form of a sinusoidal Fourier series with temporarily
unknown, time-dependent Fourier coefficients:

ut,x,y) = ZZukJ(t)sm—sm Jmy
k=1j=1 b
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Methods for time-dependent problems
Fourier’s method

Substituting the above form of u into the differential equation:

%U—DAU—ZZ(UKJ(t)+D( 22+ )ukj(t)jsm?sm%y

k=1j=1
The function u satisfies the original problem, if the Fourier coefficient functions u,; satisfy the
following ordinary differential equations and initial conditions:

’ 22 122
Ui (1) + D( VR Juy; (t) =y (t)

Uy (0) = ay;

As a special case, If the functions c,; are constant (i.e. the function f does not depend on t), then:

Cki Ci Dty k2 2 .2 2
Uk'(t)Z—J-i- dyi — J e k] }Lk' = n + I
J D - 7\’|(j J DE 7\‘kj J a2 b2

The effect of the initial condition rapidly decays, and the solution tends to the solution of the
Poisson equation |—DAu = f| (supplied with homogeneous boundary conditions).
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