

A UNIQUE FORMALISM FOR THE MULTILINGUAL SWDPS

DR. MARIA RAFFAI PH.D.
Professor at Szechenyi Istvan University, Hungary

 Tel/Fax: (+36) 96-613-525 E-Mail: raffai@sze.hu
HomePage: http://rs1.sze.hu/~raffai

As the changing circumstances force the organizations to use the most up-to-date Information Technologies (IT)
and to work in multinational environment is an urgent need appears to deal with the key factors of the effective
software development projects. Analyzing the results of the Software Development Projects (SwDP) of the last
several years, we have to state, that most of them are failed, to be more precise: 76% of the SwDPs could not
reach the user’s goals. The main reason is, that the developers do not co-operate enough with the users, and
they do not perform the adequate change and configuration management, the quality assurance, the testing
processes or the other well-known development and control practices. From the experiences in project manage-
ment and from the publications of the scientific results in this context, we learned that the SwDP’s success de-
pends also on the right scope, the strategy, the appropriate methodology and most of all the effective co-
operation/communication among users, developers and project members.

The communication problem presents itself even in the case of international projects since the members of these
projects are coming from different countries, speaking different languages and having different culture in the back-
ground, and they know and work on different computer platforms. In my presentation I intend to point to the impor-
tant role of the standard visualization techniques that gives great help in communication and understanding.

1. BEYOND THE SOFTWARE DEVELOPMENT PROJECTS

The software development professionals are responsible for providing the functionality and usability of the ap-
plications and also for delivering them on time, on budget and often with zero defects. But at the beginning the
user’s requirements are usually unknown or estimated and can be satisfied only with a disciplined and pragmatic
development process. In particular, an effective process must support the continuous integration, must use stan-
dard solutions and tools in order to realize a successful communication among the project members [4].

This evolution process forces the enterprises to use effective solutions and to fit themselves into the global e-
economy: the so-called new economy. Both from theoretical and practical aspects, the organizations need to
define the problem-space, to model the business domain and the Corporate IS they must apply reusable compo-
nents and computer-aided tools for planning and implementing applications. As it makes a high demand to find
an appropriate philosophy for the real world’s abstraction as the user-analyst co-operation needs tools for under-
standing and communication, as the developers are coming from different cultural and linguistic environment we
need to develop and apply new technologies and techniques.

From my more then two decades of experience in the field of software development processes, I can support the
above-mentioned statement. In the last years I have definitely learned, that the achievements and the efficiency
of the SwD projects depend to a great extend mainly on the following factors: (1) the expert-knowledge of the
project members, (2) the talent and the communication skills of the project manager, the analysts and the use
case designers, (3) the methods and tools applied in the project-management and the software development proc-
ess and (4) last but not least the communication and understanding of all the actors taking part from all sides of
the projects. My presentation focuses mainly on solutions, which lead to understand and specify the user’s ex-
pectations and then on the interests of IT project managers and developers who want to create highly effective
teams for the SwDPs. I intend to point to the most important aspects of the concepts and tools for managing
software development projects, and to show a unique solution what helps the participants of the project in com-
municating and in better understanding each other [6].

1.1. The Model Driven Concept

Developing a model for an industrial-strength software system prior to its construction or renovation is a well-
considered abstraction process. The good models are essential for communication among project team members
and for assuring architectural soundness. As the complexity of systems increases, so does the importance of the
effective modeling techniques. The basic target of building models is to know and understand the structure and
the behavior of the system, its components and their relations and to give a precise description of it.

A model is a simplification of the reality, a blueprint of a system. It is the result of an abstraction process, which
reflects the general, essential and permanent features from the modeling target’s view. It is a formal specification
to describe the functionality, the structure, and/or the behavior of the system. Modeling is a proven and well-
accepted engineering technique. A good model includes those elements that have broad effect and omits those
minor elements that are irrelevant to the given level of abstraction. But the reality may be described from differ-
ent aspects, and these model views are therefore semantically closed abstractions of a system. A model may be
structural, emphasizing the organization of a system, or it may be behavioral, emphasizing the dynamics of the
system. Through modeling the specialists intend to achieve four main goals:

― to specify the structure and the behavior of the system,
― to describe and visualize the existing and the designed system,
― to make possible to document the process, the results and the decisions and
― to give a template for constructing and implementing systems.

The modeling tools help to create technology-neutral designs that are then transformed into the platform inde-
pendent models.

1.2. The Object-Oriented Paradigm

The object-oriented (OO) paradigm has become a dominant force for today in the computing world. According
to a recent survey conducted by International Data Corporation (IDC 2000) more than 80% of the development
organizations are expected to use object technology as the basis for their distributed development strategy. The
object technology is a powerful modeling paradigm with important mechanisms for handling complexity, any
process design and redesign. The OO concept makes possible to design applications in the context of the objects
which are faithful modeled components of the realty, and which can be later reused partially or wholly. Thus a
new object must never be designed and created from scratch again, since there exists probably already an object
from which it can be derived [9]. The advantages of the Object Technology (OT) include improved software
quality, economic gains profiting from the reusable objects and components, shorter project development life-
cycle, and the creation of truly distributed software across the different platforms. The object-orientation rec-
ommends several approaches to deal with heterogeneous nature of reality. Thus, a diversity of options is required
in order to capture the diversity of reality [3]. Let us see the main features of the object technology (OT) from
the aspects of its key ideas:

― The basic elements of the OT are objects, messages and classes.
― The mechanism is behind the encapsulation, polymorphism and inheritance.
― The advantages of OT lie in the increased productivity, quality and adaptivity.
― The innovations and extensions added to OT in the last few years are the handling of interfaces, the para-

digm of delegation and distribution.
― The factors for succeeding object technology are defined in motivation, education and in determination.

1.3. The Role of Visualization

In the middle of the eighties the scientists and the world-leading software companies (with my considerable
participation) established a Consortium in order to work out a language being suitable for visualization. The
language that is called Unified Modeling Language (UML) helps the innovation projects to focus on fitting the
changing environments and with its visualization capability is suitable

― to describe every aspects of the business domain,
― to study management’s efforts and
― to analyze the existing system and comprehend its behavior.

The UML was first accepted as a modeling standard in 1997 by the OMG (Object Management Group) in order
to give an effective analyzing and designing tool for the developers and to put a communication technique at the
project members’ disposal.

2. THE UNIFIED MODELING LANGUAGE

The UML is a human-readable graphical/textual notation which, by its visualizing capability, is primarily for
analyzing, understanding and specifying the technology-independent business domain, for mapping the business
processes, for designing, constructing and documenting artifacts of the developed software-system. The UML as
an industry-wide breakthrough for visual modeling satisfies the newly emerged requirements, based on experi-
ences of the users and the specialists of the SwDPs. The most important features are: usability, component-based
development, executability and configurability. The UML as a well-defined and widely accepted modeling lan-
guage includes (1) model elements: fundamental modeling concepts and semantics, (2) notations: visual render-
ing of model elements and (3) guidelines: idioms of usage within the trade.

2.1. The Language Features

The UML is a language that defines rules for combining words and provides a vocabulary for the purpose of the
communication. For software intensive systems a language is required for addressing the different views of the
system’s architecture and behavior through the software development life cycle. Though a modeling language is
not capable to perform the abstraction process aimed to reveal the business situation, the vocabulary and rules
are still great help in describing the main features, and in creating, reading and manage well formed models [6].
Henceforth let us see what is the UML for, and how can it satisfy the user’s requirements!

A language for visualization

As the developers are working on complex systems and in different teams, they have to face several problems
that should be solved. (1) The main problem is that during the communication of the different model views to
others there can be misunderstanding among the members unless everyone involved speaks the same language.
Although some projects develop their own language, it is difficult to imagine what is going on if you are an
outsider or new to the group. (2) There are some circumstances about a software system that cannot be compre-
hensible unless the built models are expressed in textual programming languages (see for example the class hier-
archy). (3) Last but not least if the developers make program codes without designing models then the domain
information will loss partially or fully forever because the implementation in most cases is not recreatable. There
are things that are best modeled textually, others are best modeled graphically. The UML settles the above-
mentioned problems with its notations and the well-defined semantics. This means that somebody develops a
model in UML and the others in present or a later project can understand and implement it unambiguously.

A language for specifying and constructing

By specifying models they became precise, unambiguous and complete. The UML addresses specification for
describing the analysis, design and implementation model views, and for deploying the software intensive sys-
tems. As UML is a visual language it is suitable to map from a model to a source code written in some pro-
gramming languages. The code generation from a model to a programming language is a forward engineering
technology. The reverse is also possible; there are already software tools, which encode the programs to UML
models. The process is called reverse engineering.

A language for documenting

In an effective software project the experts from all fields of information science and technology produces dif-
ferent artifacts such as requirements, project plan, prototypes, architecture, design, source code, releases, and
some products that are critical only from the viewpoint of controlling, measuring and communicating. Depend-
ing on the development culture, these artifacts are treated more or less formally than others, but it cannot be
denied that through the UML visualized documentation the users are able to better understand the running soft-
ware and the developers are capable to make the necessary changes in the applications.

In addition, the UML is sufficiently expressive and unambiguous to permit the direct execution of models, the
simulation of systems and the instrumentation of the running systems.

2.2. The New UML Standard

As the first standard version of the UML had not satisfy entirely the user’s need it had to be taken under review-
ing and reorganizing [1],[7]. The U2 Partners Consortium who is responsible for the revised version of UML
consists of both tool vendors and power users dedicated to make UML a language that is easier to use, to imple-
ment and to customize. This means that several major changes both in semantics, notations and in extensibility
mechanism was made related to the earlier versions [3] such as:

― The architectural modeling concept suits the MOF meta-meta-model standard1, and it makes possible to
interconnect the different model-views, namely the use cases, the behavior model (sequences, cooperation,
activity and state transition), the components and the nodes.

― The activity graph semantic is separated from that of the state machine. There are new rules to express al-
ternative paths and concurrency by the sequence diagram and to specify state machine generalization.

― The process of the component design is interface-based, that is to say it is possible to assign the required
(input) and the proposed (output) interfaces to the components, but there are also new solutions to embed
components.

― The extensibility mechanism is consistent with the 4-layer meta-model architecture.
― The kernel of the UML specification is the definition of the syntax and semantics [2], it includes related

definitions for model interchange (UML CORBA facility, XMI DTD), language extensions (UML Stan-
dard Profiles) and constraint (OCL: Object Constraint Language).

The revision process is being done in four parts: the Infrastructure, the Superstructure, the OCL (Object Con-
straint Language) and the Diagram Interchange [1]. Several additional specifications help to tailor the UML to
model the functionality and dynamism of the system more precisely: the new Action Semantics specification will
enhance the language representation of behavior; a human-readable Textual Notation will enable a new class of
UML editor programs and enhance the way, how the UML models can be manipulated. Notation elements will
map the one-to-one to the more verbose XMI, but the syntax will differ. Analyzing the UML v 2.0, we do not
forget to mention the standard Software Process Engineering Metamodel (SPEM) which defines a framework for
describing methodologies in a standard way. It will not standardize any particular methodology, but will enhance
interoperability from one methodology to another.

This new version of UML that was completed as a standard at the end of 2003 has several additional specifica-
tions, such as action-semantic specification, human readability by textual notations in the form of a class, and a
standard development methodology framework as a metamodel. The UML Version 2.0 fulfilling the newly
emerged requirements based on experiences from users and tool vendors is expected to be the basis for many
tools, including those for visual modeling, simulation and development environments, and it is qualified for a
base of many advanced techniques. From the Figure 1 we can see the connection between the different model
views and the transformation process.

Summarizing all the aspects of today’s software engineering process or better to say software technology we
have to state that it is necessary to change the developer’s mind and style. As the user’s requirements and the
information technology has been going through considerable changes, as serious value of information assets has
accumulated in the last decades so the SDPs are required to focus on different IT targets that aim to save the
existing IT and to give solutions for integrating the legacy and the new applications. The new standard has been
unified in the MDA framework [5] which emphasizes the importance of integration and assure to meet all de-
mands such as:

― technology-independent representation of the business on high level of abstraction and on an interface-
based implementation,

― smooth and rapid integration of yesterday’s and the tomorrow’s architectures on intra- and inter-business
boundaries (across deployment technologies),

― reduced time-period and costs throughout the application life-cycle taking advantages of reusability of
models, codes, training and people,

― two level of modeling (PIM, PSM) and more views in each level,
― protecting the earlier investments and increasing return on new technology investments,
― scalability, robustness and security via generated code by stable model-based approach,
― improving application quality.

1 The Meta Object Facility represents the integration of work currently underway in the areas of object repositories, object modeling tools,
and meta-data management in distributed object environments. The MOF specification uses UML notation. The purpose of this key building
block is to provide a set of CORBA interfaces that can be used to define and manipulate a set of interoperable metamodels.

Business View

Conceptual View
Static approach

Conceptual View
Dynamic Approach

Component
View

Deployment View

Figure 1. From business view to the deployment view

3. CONCLUSIONS

As one of the primary goals of convergent engineering is the business continuity, the managers need to go back
to control both in terms of their bargaining power and management of product and service negotiations as well as
in terms of their internal IT planning. By this concept the managers can see and understand what is happening,
how resources are being utilized to produce business relevant results. The UML is the key enabling technology
for the Model Driven Architecture, but it can be effective only if the project managers and the developers change
their mind, culture and way of working, and if the applications are based on the normative, platform-
independent, UML specified models. By emphasizing standard’s universality, a unified framework allows the
developers working in international teams to create applications that satisfy the long term user’s need and that
are portable and interoperable naturally across a broad spectrum of systems from embedded to desktop, to server,
to mainframe and across the Internet.

References

[1] Introducing to OMG’s Unified Modeling Language – http://www.omg.org/gettingstarted/ June 2002
[2] JACOBSON, I. – BOOCH, G. – RUMBAUGH, J.: The Unified Software Development Process – Addison-

Wesley Longman Inc., 1999.
[3] KNAPMAN, J.: Business-Oriented Constraint Language – 3rd International Conference on the Unified

Modeling Language, University of York, UK, October, 2000.
[4] KORBYN, C.: A Standardization Odyssey – Communications of the ACM, 1999. Vol. 42. No. 10.
[5] MDA Specifications – http://www.omg.org/mda/specs.htm June 2002.
[6] RAFFAI, M.: Object Technology – 1st volume: Objects in Business Modeling – The Paradigm and the

Methods of the Object-oriented Technology 2nd volume: Unified Software Development Solutions – UML
Modeling Language, RUP Methodology – Publisher Novadat, 2001.

[7] RAFFAI, M.: The History on Computing – Publisher Springer, 1997.
[8] RAFFAI, M.: Managing Software Development Projects – SENET Project Management Rev, Vol.3/No.1. 2003.
[9] RAIM, M.: Implementation Infrastructure: enablers for rapid Enterprise Integration – OMG Information

Day, 2002.
[10] TAYLOR, DAVID A. – ZAMIR, SABA: The Object-Oriented Paradigm - The Keys to Object Technology–

Handbook of Object Technology, editor in chief: ZAMIR, SABA, CRC Press, 1998.

