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GLM 
Univariate and Multivariate 

GLM (general linear model) is a general procedure for analysis of variance and 
covariance, as well as regression. It can be used for both univariate and multivariate 
designs. Repeated measures analysis is also available. Algorithms that apply only to 
repeated measures are in the chapter GLM Repeated Measures. 

For information on post hoc tests, see Appendix 10. For sums of squares, see 
Appendix 11. For distribution functions, see Appendix 12. For Box’s M test, see 
Appendix 14.  

Notation 
The following notation is used throughout this chapter. Unless otherwise stated, all 
vectors are column vectors and all quantities are known. 

 
n Number of cases.  

N Effective sample size.  

p  Number of parameters (including the constant, if it exists) in the model.  

r Number of dependent variables in the model.   

Y n × r matrix of dependent variables. The rows are the cases and the columns 
are the dependent variables. The ith row is ′yi , i n= 1, ,K . 

X n × p design matrix. The rows are the cases and the columns are the 
parameters. The ith row is ′xi , i n= 1, ,K . 

rX  Number of nonredundant columns in the design matrix. Also the rank of the 
design matrix.  

w
i
 Regression weight of the ith case. 

f
i
 Frequency weight of the ith case.  

B p r×  unknown parameter matrix. The columns are the dependent variables. 

The jth column is bj, j r= 1, ,K . 

Σ r × r unknown common multiplier of the covariance matrix of any row of 

Y. The (i, j)th element is σij, i r= 1, ,K ,  j r= 1, ,K . 
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Model 
The model is Y XB=  and ′yi  is independently distributed as a p-dimensional 

normal distribution with mean ′x Bi  and covariance matrix wi
−1Σ . The ith case is 

ignored if wi ≤ 0 . 

Frequency Weight and Total Sample Size 
The frequency weight f

i
 is the number of replications represented by an SPSS case; 

therefore, the weight must be a non-negative integer. It is computed by rounding 
the value in the SPSS weight variable to the nearest integer. The total sample size is 

N f wi i
i

n
= >

=∑ I 0
1

1 6 , where I wi > =0 11 6  if wi > 0  and is equal to 0 otherwise. 

The Cross-Product and Sums-of-Squares Matrices 
To prepare for the SWEEP operation, an augmented row vector of length p r+0 5  is 

formed: 

′ = ′ ′z x yi i i,1 6  

Then the p r p r+ × +0 5 0 5  matrix is computed: 

′ = ′
=∑Z WZ z zf wi

i

n
i i i

1
.  

This matrix is partitioned as 

′ =
′ ′
′ ′

�
��

�
��Z WZ

X WX X WY

Y WX Y WY
  

The upper left p p×  submatrix is X′WX and the lower right r r×  submatrix is 

Y′WY. 
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Sweep Operation 
Three important matrices, G, $B , and S, are obtained by sweeping the Z′WZ matrix 
as follows: 

1. Sweep sequentially the first p rows and the first p columns of Z′WZ, starting 
from the first row and the first column. 

2. After the pth row and the pth column are swept, the resulting matrix is 

−
′

�
��

�
��

G B

B S

$

$
 

where G is a p p×  symmetric g2 generalized inverse of X′WX, $B  is the p r×  
matrix of parameter estimates and S is the r r×  symmetric matrix of sums of 
squares and cross products of residuals. 

The SWEEP routine is adapted from Algorithm AS 178 by Clarke (1982) and 
Remarks R78 by Ridout and Cobby (1989). 

Residual Covariance Matrix 

The estimated r r×  covariance matrix is $Σ = −S XN r1 6 provided r NX < . If 

r NX = , then $Σ = 0 . If r NX > , then all elements of $Σ  are system missing.  
The residual degrees of freedom is N rX− . If r NX > , then the degrees of 

freedom is system missing. 

Parameter Estimates 
Let the elements of $Σ  be $σ ij , the elements of G, gij, and the elements of $B , $bij . 

Then var( $ )bij  is estimated by $σ jj iig  for i p j r= =1 1, , ; , ,K K  and cov( $ , $ )b bij rs  is 

estimated by $σ js irg  for i r p j s r, , , ; , , ,= =1 1K K .  

Standard Error of $bij  

se $ $b gij jj ii4 9 = σ  

When the ith parameter is redundant, the standard error is system missing. 
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The t Statistic  

For testing H0: bij = 0  versus H1:bij ≠ 0, the t statistic is 

t
b bij ij=

%&'K
$ / ( $ )se if the standard error is positive

SYSMIS otherwise
 

The significance value for this statistic is 2 1− −CDF.T t , N rx1 63 8 where CDF.T is 

the SPSS function for the cumulative t distribution. 

Partial Eta Squared Statistic 

η2

2 2

1 0=
+ − <

= ≠

%
&K

'K

$ ( $ ( )var( $ ))b b N r b N

r N b
ij ij ij X

X ij

X if r  and the denominator is positive

if  but 

SYSMIS otherwise

 

The value should be within 0 12≤ ≤η . 

Noncentrality Parameter 

c t=  

Observed Power  

p

t N r c t N r c r N

r N

c X c X X

X
=

− − + − − <

≥

%
&
KK

'
KK

1 NCDF.T NCDF.T

SYSMIS
or any arguments to NCDF.T

or IDF.T are SYSMIS

( , , ) ( , , )

,

 

where t N rc X= − −IDF.T 1 2α / ,1 6  and α is the user-specified power level 

0 1< <α0 5. NCDF.T and IDF.T are the SPSS functions for the cumulative 
noncentral t distribution and for the inverse cumulative t distribution, respectively. 

The default value is α = 0 05. . The observed power should be within 0 1≤ ≤p .  
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Confidence Interval  

For the p% level, the individual univariate confidence interval for the parameter is  

$ se $b t bij ij± α 4 9  

where t p N rXα = + −IDF.T 0 5 1 100. / ,0 52 7 for i n j r= =1 1, , ; , ,K K . The default 

value of p is 95 (0 100< <p ). 

Correlation  

corr if the standard errors are positive

SYSMIS otherwise
( $ , $ )

$ se $ se $
b b g b b

ij rs
js ir ij rs= ×%

&K
'K
σ 4 9 4 94 9  

for i r p j s r, , , ; , , ,= =1 1K K .  

Estimated Marginal Means 

Estimated marginal means (EMMEANS) are computed as the generic ′l Bm$  
expression with appropriate l and m vectors. l is a column vector of length p and m 
is a column vector of length r. Since the l vector is chosen to be always estimable, 
the quantity ′l Bm$  is in fact the estimated modified marginal means (Searle, Speed, 
and Milliken, 1980). When covariates (or products of covariates) are present in the 
effects, the overall means of the covariates (or products of covariates) are used in 
the l matrix. Suppose X and Y are covariates and they appear as X*Y in an effect; 
then the mean of X*Y is used instead of the product of the mean of X and the mean 
of Y. 

L Matrix 

For each level combination of the between subjects factors in TABLES, identify 
the nonmissing cases with positive caseweights and positive regression weights 
which are associated with the current level combination. Suppose the cases are 
classified by three between-subjects factors: A, B and C. Now A and B are 
specified in TABLES and the current level combination is A=1 and B=2. A case in 
the cell A=1, B=2, and C=3 is associated with the current level combination, 



6   GLM Univariate and Multivariate 

whereas a case in the cell A=1, B=3 and C=3 is not. Compute the average of the 
design matrix rows corresponding to these cases.  

If an effect contains a covariate, then its parameters which belong to the current 
level combination are equal to the mean of the covariate, and are equal to 0 
otherwise. Using the above example, for effect A*X where X is a covariate, the 
parameter [A=1]*X belongs to the current level combination where the parameter 
[A=2]*X does not. If the effect contains a product of covariates, then the mean of 
the product is applied. 

The result is the l vector for the current between-subjects factor level 
combination. When none of the between-subjects effects contain covariates, the 
vector always forms an estimable function. Otherwise, a non-estimable function 
may occur, depending on the data. 

M Matrix 

The M matrix is formed as a series of Kronecker products 

M I A A= ⊗ ⊗ ⊗c t1 L  

where 

A
I

1k
r

k r

k

k

k

r
=

%&'
if the th within subjects factor is specified in TABLES

otherwise11 6  

with 1rk
 a column vector of length rk  and all of its elements equal to 1. 

If OVERALL or only between-subjects factors are specified in TABLES, then 
A 1k k rr

k
= 11 6  for k t= 1, ,K . 

The column for a particular within-subjects factor level combination, denoted 
by m, is extracted accordingly from this M matrix. 

Standard Error 

se $ $
′ = ′ ′ − >%

&K
'K

l Bm l Gl m m X4 9 0 54 9Σ if 

SYSMIS otherwise

N r 0  (1) 

Since l are coefficients of an estimable function, the standard error is the same for 
any generalized inverse G. 
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Significance 

The t statistic is 

t = ′ ′ ′ >%&K'K
l Bm l Bm l Bm$ se $ se $4 9 4 9if 

SYSMIS otherwise

0  

If the t statistic is not system missing, then the significance is computed based on a 
t distribution with N r− X  degrees of freedom.  

Pairwise Comparison 

Between-Subjects Factor 

Suppose the l vectors are indexed by the level of the between-subjects factor as 
li ib1, ,K , i ns s= 1, ,K  and s b= 1, ,K  where ns  is the number of levels of between-

subjects factor s and b is the number of between-subjects factors specified inside 
TABLES. The difference in estimated marginal means of level is and level ′is  of 
between-subjects factor s at fixed levels of other between-subjects factors is 

l l Bmi i i i i i i i i is s s b s s s b1 1 1 1 1 1, , , , , , , , , , , ,
$

K K K K− + − +
−

′
′4 9  for i i n i is s s s s, , , ;′ = ≠ ′1 K . 

The standard error of the difference is computed by substituting for l in (1): 
l li i i i i i i i i is s s b s s s b1 1 1 1 1 1, , , , , , , , , , , ,K K K K− + − +

− ′ . 

Within-Subjects Factor 

Suppose the m vectors are indexed by level of the within-subjects factor as 
m j jw1, ,K , j ns s= 1, ,K  and s w= 1, ,K , where ns  is the number of levels of within-

subjects factor s and w is the number of within-subjects factors specified inside 
TABLES. The difference in estimated marginal means of level jsand level ′js  of 
within-subjects factor s at fixed levels of other within-subjects factors is 

′ −
− + − +′l B m mj j j j j j j j j js s s b s s s b1 1 1 1 1 1, , , , , , , , , , , ,K K K K

4 9 for j j n j js s s s s, , , ;′ = ≠ ′1 K . 

The standard error of the difference is computed by substituting for m in (1) 
m mi i i i i i i i i is s s b s s s b1 1 1 1 1 1, , , , , , , , , , , ,K K K K− + − +

− ′ . 
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Confidence Interval 

The 1 100%− ×α0 5  confidence interval  is 

′ ± × ′− −l Bm l Bm
X

$ se $
;t N r1 2α 4 9  

and t N r1 2− −α ; X
 is the 1 2 100%− ×α1 6  percentile of a t distribution with N r− X  

degrees of freedom. No confidence interval is computed if N r− ≤X 0 . 

Saved Values 
Temporary variables can be added to the working data file. These include predicted 
values, residuals, and diagnostics. 

Predicted Values 

The n r×  matrix of predicted values is $ $Y XB= . The ith row of $Y is $ $′ = ′y x Bi i , 

i n= 1, ,K . Let the elements of $Y  be $yij  and the elements of XGX′ be π i j . 

The standard error of $yij  is  

se $ $yij jj ii3 8 = σ π        for i n j r= =1 1, , ; , ,K K  

The weighted predicted value of the ith case is wi i$ ′y . 

Residuals 

The n r×   matrix of residuals is $ $E Y Y= − .   

The ith row of $E is ′ = ′ − ′$ $e y yi i i , i n= 1, ,K .  

Let the elements of $E  be $eij ; then  

$ $e y yij ij ij= − , for i n j r= =1 1, , ; , ,K K   

The weighted residual is wi i$ ′e . 
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Deleted Residuals (PRESS Residuals) 

The deleted residual is the predicted residual for the ith case that results from 
omitting the ith case from estimation. It is: 

DRESID
if and

SYSMIS otherwise
ij

ij i ii i i iie w w w
=

− > <%&'
$ ;

.

1 0 1π π1 6
  

for i n j r= =1 1, , ; , ,K K . 

Standardized Residuals 

The standardized residual is the residual divided by the standard deviation of data:  

ZRESID if 

SYSMIS otherwise
ij = − >%

&K
'K
( $ ) $y y w wij ij jj i iσ4 9 0  

Studentized Residuals 

The standard error for $eij  is 

se( $ )
$ ( ) ;

.
e

w w w
ij

jj i ii i i ii= − > <%&K'K
σ π π1 0 1if and

SYSMIS otherwise
 

for i n j r= =1 1, , ; , ,K K . The Studentized residual is the residual divided by the 
standard error of the residual.  

SRESID
if  and 

SYSMIS otherwiseij =
> >%&'

$ se( $ ) ( $ )e e w se eij ij i ij0 0
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Diagnostics 

Cook’s Distance  

Cook’s Distance D measures the change to the solution that results from omitting 
each observation. The formula is 

D
e

w w rij
ij

jj i ii

ii

i ii X

=
−

�
�
��

�
�
�� −

�
��

�
��

$

$σ π
π

π1 1

1
2

1 6 1 6  

for i n j r= =1 1, , ; , ,K K . This formula is equivalent to 

D e e y e rij ij ij ij ij X= $ se( $ ) se $ se $3 8 3 8 3 84 92
 provided w ei ij> >0 0 and se $3 8 . 

When w ei ij≤ =0 0 or se $3 8 , Dij is system missing. 

Leverage (Uncentered) 

The leverage for the ith case (i n= 1, ,K ) for all dependent variables is  

LEVER
if

SYSMIS otherwisei
i ii iw w

=
>%&'

π 0
 

Hypothesis Testing 
Let L be an l p×  known matrix, M be an r m×  known matrix and K be an l m×  
known matrix. The test hypotheses H0:LBM K=  versus H1:LBM K≠  are 
testable if and only if  LB is estimable. 

The following results apply to testable hypotheses only. Nontestable hypotheses are 
excluded. 

The hypothesis SSCP matrix is S LBM K LGL LBM KH = − ′ ′ −−( $ ) ( $ )0 5 1  and the 

error SSCP matrix is S M SME = ′ . 
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Four test statistics, based on the eigenvalues of S SE H
−1 , are available: Wilks’ 

lambda, Hotelling-Lawley trace, Pillai’s trace, and Roy’s  largest root.  
Let the eigenvalues of S SE H

−1  be λ λ1 0≥ ≥ ≥K rE
 and λ λr mE + =1 0, ,K , and 

let rE E= rank( )S ; s l rE= min ,1 6 ; n n re = − X ;  m r lE
∗ = − −1

2 12 7;  
n n re E

∗ = − −1
2 11 6 . 

Wilks’ Lambda 

Λ =
+

=
+

=
∏det

det

S

S S
E

H E kk

m1 6
1 6 1 6

1

1
1

λ
. 

When Ho is true, the F statistic 

F
lrE

=
− −ςτ υ

τ

τ
2 1 1

1
1 6 4 9Λ

Λ
 

follows asymptotically an F distribution, where 

ς

υ

τ

= − − +

= −

= − + − + − >%
&K
'K

n r l

lr

l r l r l r

e E

E

E E E

1
2

1
4

2 2 2 2 2 2

1

2

4 5 5 0

1 6
1 6
4 9 4 9 4 9if

1 otherwise

 

The degrees of freedom are lrE ,ςτ υ− 21 6. The F statistic is exact if s = 1 2, . See 

Rao (1951) and Section 8c.5 of Rao (1973) for details.   

The eta-squared statistic is η2 1/1= − Λ s .   

The noncentrality parameter is λ ξτ υ η η= − −2 12 21 6 4 9/ . 

The power is 1 2− −NCDF.F Fα ξτ υ λ, , ,lrE 1 62 7 where Fα is the upper 100α 

percentage point of the central F distribution, and α is user-specified on the ALPHA 
keyword on the CRITERIA subcommand. 
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Hotelling-Lawley Trace 

In the SPSS software, the name Hotelling-Lawley trace is shortened to Hotelling’s 
trace  

T E H k
k

m
= =−

=∑trace S S1

1
4 9 λ  

When Ho is true, the F statistic 

F
sn

s m s

T

s
=

+

+ +

∗

∗

2 1

2 1

4 9
4 9

 

follows asymptotically an F distribution with degrees of freedom 

s m s sn2 1 2 1* *,+ + +4 9 4 94 9. The F statistic is exact if s = 1. 

The eta-squared statistic is η2 1= +T s T s/ / /0 5 0 5.   
The noncentrality parameter is λ η η= + −2 1 12 2sn* /4 9 4 9 .  

The power is 1 2 1 2 1− + + +NCDF.F Fα λ, , ,* *s m s sn4 9 4 94 9  where Fα is the upper 

100α percentage point of the central F distribution, and α is user-specified on the 
ALPHA keyword on the CRITERIA subcommand. 

Pillai’s Trace 

V H H E k k
k

m
= + = +−

=∑trace S S S1 64 9 1 61

1
1λ λ  

When Ho is true, the F statistic 

F
n s

m s

V

s V
=

+ +

+ + −

∗

∗

2 1

2 1

4 9
4 9 0 5  
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follows asymptotically an F distribution with degrees of freedom 

s m s s n s2 1 2 1* *,+ + + +4 9 4 94 9 . The F statistic is exact if s = 1. 

The eta-squared statistic is η2 = V s/ .  

The noncentrality parameter is λ η η= + + −s n s2 1 12 2* /4 9 4 9. 

The power is 1 2 1 2 1− + + + +NCDF.F Fα λ, , ,* *s m s s n s4 9 4 94 9  where Fα is the 

upper 100α percentage point of the central F distribution and α is user-specified on 
the ALPHA keyword on the CRITERIA subcommand. 

Roy’s Largest Root 

Θ = λ1 

which is the largest eigenvalue of  S SE H
−1 . When H

o
is true, the F statistic is 

F n re H= − +Θ ω ω1 6  

where ω = max ,l rE1 6  is an upper bound of F that yields a lower bound on the 

significance level. The degrees of freedom are ω ω,n re H− +1 6. The F statistic is 

exact if s = 1. 

The eta-squared statistic is  η2 1= +Θ Θ/ 0 5 .  

The noncentrality parameter is  λ ω η η= − + −n re H1 6 4 92 21/ .  

The power is 1− − +NCDF.F Fα ω ω λ, , ,n le1 6 , where Fα is the upper 100α 

percentage point of the central F distribution and α is user-specified on the ALPHA 
keyword on the CRITERIA subcommand. 
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Individual Univariate Test 

F
l

n r
H i

E i
=

−
S

S X

;

; 1 6 , i m= 1, ,K  

where SH;i and SE;i are the ith diagonal elements of the matrices SH and SE 
respectively. Under the null hypothesis, the F statistic has an F distribution with 
degrees of freedom l n rX, −1 6 .   

The partial eta-squared statistic is η2 = +S S SH i H i E i; ; ;/ 3 8. 
The noncentrality parameter is λ = −n r H i E iX S S1 6 ; ; .  

The power is 1 1− −NCDF.F Fα λ, , ,n rX1 6  where Fα is the upper 100α percentage 

point of the central F distribution and α is user-specified on the ALPHA keyword on 
the CRITERIA subcommand. 

Bartlett’s Test of Sphericity 
Bartlett’s test of sphericity is printed when the Residual SSCP matrix is requested. 

Hypotheses 

In Bartlett’s test of sphericity the null hypothesis is Ho r:Σ = σ 2I  versus the 

alternative hypothesis H r1
2:Σ ≠ σ I  where σ 2 0>  is unspecified and Ir is an r r×  

identity matrix. 

Likelihood Ratio Test Statistic 

λ =

>

≤

%

&
KK

'
KK

A

A
A

A

n

nr
r

2

2 0

0

trace
trace

trace

0 51 6
0 5

0 5

if

SYSMIS if
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where A Y XB W Y XB= − ′ −$ $4 9 4 9  is the r r×  matrix of residual sums of squares 

and cross products. 

Chi-Square Approximation 

Define W n= λ2 . When n is large and under the null hypothesis that for n rX− ≥ 1 
and r ≥ 2, 

Pr log Pr Pr Pr− − ≤ = ≤ + ≤ − ≤ ++
−ρ χ ω χ χn r W c c c c O nX f f f1 62 7 4 9 4 9 4 94 9 4 92

2 4
2 2 3  

where 

f r r

r r r n r

r r r r r r

r n r

X

X

= + −

= − + + −

=
+ − − + + +

−

1 2 1

1 2 2 6

2 1 2 2 6 3 2

288

2

2

3 2

2 2 2

0 5
4 9 1 62 7

0 50 50 54 9
1 6

ρ

ω
ρ

 

Chi-Square Statistic 

c
n r W WX=

− − >%&'
ρ1 6 log if

SYSMIS otherwise

0
 

Degrees of Freedom 

f r r= + −1 2 10 5  
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Significance 

1 42− − + −CDF.CHISQ CDF.CHISQ CDF.CHISQc f c f c f, , ,0 5 0 5 0 52 7ω  

where CDF.CHISQ is the SPSS function for the cumulative chi-square 
distribution. The significance is reset to zero whenever the computed value is less 
than zero due to floating point imprecision. 

Custom Hypothesis Tests 
The TEST subcommand offers custom hypothesis tests. The hypothesis term is any 
effect specified (either explicitly or implicitly) in the DESIGN subcommand. The 
error term can be a linear combination of effects that are specified in the DESIGN 
subcommand or a sum of squares with specified degrees of freedom. The TEST 
subcommand is available only for univariate analysis; therefore, an F statistic is 
computed. When the error term is a linear combination of effects and no value for 
degrees of freedom is specified, the error degrees of freedom is approximated by 
the Satterthwaite (1946) method. 

Notation 

The following notation is used in this section: 
 

S Number of effects in the linear combination 

qs  Coefficient of the sth effect in the linear combination, s S= 1, ,K  

ls  Degrees of freedom of the sth effect in the linear combination, s S= 1, ,K  

MSs  Mean square of the sth effect in the linear combination, s S= 1, ,K  

Q Linear combination of effects 

lQ  Degrees of freedom of the linear combination 

MSQ  Mean square of the linear combination 
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Error Term 

Mean Squares 

If the error term is a linear combination of effects, the error mean square is 

MS MSQ s s

s

S

q= ×
=

∑
1

 

If the user supplied the mean squares, MSQ  is equal to the number specified after 

the keyword VS. If MSQ < 0,  the custom error term is invalid, and MSQ  is equal 

to the system-missing value and an error message is issued. 

Degrees of Freedom 

If MSQ ≥ 0 and the user did not supply the error degrees of freedom, then the error 

degrees of freedom is approximated using the Satterthwaite (1946) method. Define 

d
q l l

s
s s s s= >%&K'K
MS if 

otherwise

1 62
0

0
 

Then D ds

s

S

=
=

∑
1

. The approximate error degrees of freedom is 

l D D
Q

Q= >%
&K
'K

MS if 

SYSMIS otherwise
3 82

0   

If MSQ ≥ 0 and the user supplied the error degrees of freedom, lQ  is equal to the 

number following the keyword DF. If lQ < 0 , the custom degrees of freedom is 

invalid. In this case, lQ  is equal to the system-missing value and an error message 

is issued. 
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Hypothesis Test 

F Statistic 

The null hypothesis is that all parameters of the hypothesis effect are zero. The F 
statistic is used for testing this null hypothesis. Suppose the mean square and the 
degrees of freedom of the hypothesis effect are MSH  and lH ; then the F statistic is 

F
H

Q
Q H=

> ≥%
&K
'K

MS

MS
if MS &  MS

SYSMIS otherwise

0 0
 

Significance Level 

The significance level is 

significance
if SYSMIS

SYSMIS otherwise
=

− > > ≠%&'
1 0 0CDF.F( , , ) , &F l l l l FH Q H Q  

where CDF.F is the SPSS function for the F cumulative distribution function. 

Univariate Mixed Model 
This section describes the algorithms pertaining to a random effects model. GLM 
offers mixed model analysis only for univariate models—that is, for r = 1. 

Notation 

The following notation is used throughout this section. Unless otherwise stated, all 
vectors are column vectors and all quantities are known. 

 
k  Number of random effects, k ≥ 0 . 

p0  Number of parameters in the fixed effects, p0 0≥ . 

pi  Number of parameters in the ith random effect, pi ≥ 0 , i k= 1, ,K . 

σ i
2  Unknown variance of the ith random effect, σ i

2 0≥ , i k= 1, ,K . 
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σ e
2  Unknown variance of the residual term, σ e

2 0> . 

Xi  The n pi×  design matrix, i k= 0 1, , ,K . 

β0  The length p0  vector of parameters of the fixed effects. 

βi  The length pi  vector of parameters of the ith random effect, i k= 1, ,K . 

L The s p×  full row rank matrix. The rows are estimable functions. s ≥ 1. 

Relationships between these symbols and those defined at the beginning of the 
chapter are: 

• p p p pk= + + +0 1 L  

• X X X X= 0 1| | |K k  

• B =

�

!

    

"

$

####

β
β

β

0

1

M

k

 

Model 

The mixed model is represented, following Rao (1973), as 

Y X X e= + +
=
∑0 0

1

β βi i

i

k

 

The random vectors β β1, ,K k  and e are assumed to be jointly independent. 

Moreover, the random vector βi  is distributed as Np i pi i
0 I,σ 24 9 for i k= 1, ,K  and 

the residual vector e is distributed as Nn e0 W,σ 2 1−4 9 . Thus, 

E

i i i

i

k

e

Y X

Y X X W

0 5

0 5

=

= ′ +
=

−∑
0 0

2

1

2 1

β

cov σ σ
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Expected Mean Squares 

For the estimable function L, the expected hypothesis sum of squares is 

E SS EL L

L i k L k

i

k

e L

1 6

1 6

= ′�� ��

= ′ ′ + ′�� �� +
=
∑

Y W A W Y

X W A W X X W A W X A

1
2

1
2

1
2

1
2

1
2

1
2

0 0 0 0
2

1

2β β σ σtrace trace
 

where 

A W XGL LGL LGX WL = ′ ′ ′−1
2

1
210 5  

Since L LGX WX= ′ , trace AL s1 6 =  and ′ = ′ ′ −X W A W X L LGL L
1
2

1
2 1

L 0 5 . The 

matrix ′X W A W X
1
2

1
2

L  can therefore be computed in the following way: 

1. Compute an s s×  upper triangular matrix U such that ′ = ′U U LGL by the 
Cholesky decomposition. 

2. Invert the matrix U to give U−1. 

3. Compute C L U= ′ −1. 

Now we have ′ = ′X W A W X CC
1
2

1
2

L . If the rows of C are partitioned into the 
same-size submatrices as those contained in X—that is, 

C

C

C

C

=

�

!

    

"

$

####

0

1

M

k

 

where Ci  is a p si ×  submatrix—then ′ = ′X W A W X C Ck L k i i
1
2

1
2 , i k= 0 1, , ,K . 
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Since trace C Ci i′1 6 is equal to the sum of squares of the elements in Ci , denoted 

by SSQ Ci1 6, the matrices C Ci i′  need not be formed. The preferred computational 

formula for the expected sum of squares is 

E SS sL i i

i

k

e1 6 1 6= ′ ′ + +
=
∑β β0 0 0 0

2

1

2C C Cσ σSSQ  

Finally the expected mean square is 

E MS
s

E SS
s sL L i i

i

k

e1 6 1 6 1 6= = ′ ′ + +
=
∑1 1 1

0 0 0 0
2

1

2β βC C Cσ σSSQ  

For the residual term, the expected residual mean square is: E MSE e0 5 = σ 2 . 

Note: GLM does not compute the term 
1

0 0 0 0s
′ ′β βC C  but reports the fixed effects 

whose corresponding row block in C0 contains nonzero elements. 

Hypothesis Test in Mixed Models 

Suppose MSL  is the mean square for the effect whose estimable function is L, and 
sL  is the associated degrees of freedom. The F statistic for testing this effect is 

F
MS

MS
L

E L

=
0 5

 

where MSE L0 5  is the mean square of the error term with sE L0 5  degrees of freedom. 

Null Hypothesis Expected Mean Squares  

If  the effect being tested is a fixed effect, its expected mean square is 

E MS c c Q LL e k k1 6 0 5= + + + +σ σ σ2
1 1

2 2L  
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where c ck1, ,K  are coefficients and Q L0 5  is a quadratic term involving the fixed 
effects. Under the null hypothesis, it is assumed that Q L0 5 = 0. Although the 
quadratic term may involve effects that are unrelated to the effect being tested, such 
effects are assumed to be zero in order to draw a correct inference for the effect 
being tested. Therefore, under the null hypothesis, the expected mean square is 

E MS c cL e k k1 6 = + + +σ σ σ2
1 1

2 2L  

If the effect being tested is a random effect, say the jth 1 ≤ ≤j k0 5 random effect, its 

expected mean square is 

E MS c cL e k k1 6 = + + +σ σ σ2
1 1

2 2L  

Under the null hypothesis σ j
2 0= ; hence, the expected mean square is 

E MS cL e i i

i k i j

1 6 = +
≤ ≤ ≠
∑σ σ2 2

1 ,

 

Error Mean Squares 

Let MSi  be the mean square of the ith i k= 1, ,K0 5 random effect. Let si  be the 
corresponding degrees of freedom. The error term is then found as a linear 
combination of the expected mean squares of the random effects: 

MS q MS q MS q MSEE L k k k0 5 = + + + +1 1 1L  

such that 

E MS q E MS q E MS q E MSE c cE L k k k e k k0 54 9 1 6 1 6 0 5= + + + = + + ++1 1 1
2

1 1
2 2L Lσ σ σ  

If si = 0 1 ≤ ≤i k0 5  then qi = 0 . 
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The error degrees of freedom is computed using the Satterthwaite (1946) method: 

s
MS

q MS s
E L

E L

i i i

i k si

0 5
0 54 9

1 6
=

≤ ≤ >
∑

2

2

1 0;

 

If the design is balanced, the above F statistic is approximately distributed as an F 

distribution with degrees of freedom s sL E L, 0 54 9  under the null hypothesis. The 

statistic is exact when only one random effect is used as the error term—that is, 
qi0

1=  and qi = 0  for i i≠ 0. If the design is not balanced, the above approximation 

may not be valid (even when only one random effect is used as the error term) 
because the hypothesis term and the error term may not be independent. 
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