REGRESSION

This procedure performs multiple linear regression with five methods for entry and
removal of variables. It also provides extensive analysis of residual and influential
cases. Caseweight (CASEWEIGHT) and regression weight (REGWGT) can be
specified in the model fitting.

Notation

The following notation is used throughout this chapter unless otherwise stated:

Yi
G
Ji

Dependent variable for case i with variance o? / (o]
Caseweight for casei; G =1 if CASEWEIGHT is not specified
Regression weight for casei; gj =1 if REGWGT isnot specified
Number of distinct cases

GG

|
Wi

=1

Number of independent variables
|
Sum of caseweights: Z G
1=1

The kth independent variable for casei

Sample mean for the kth independent variable: )_(k = Z Wi X | /W
1=1

Sample mean for the dependent variable: Y = Z WY
=1

Leverage for casei
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h T

Sample covariancefor Xy and X

4
Syy Sample variance for Y
Sy Sample covariance for X, and Y

pD Number of coefficientsin the model. pD = p if theintercept is not included;
otherwise pD =p+l

R The sample correlation matrix for Xg,..., X and Y

Descriptive Statistics

1 e rlp rly
R = o1 ... r2p r2y
g . g d
I’yl e ryp ryy
where
J
S Sjj
and

Fye =1 :i
"=y TS,

The sample mean X; and covariance §j are computed by a provisional means

algorithm. Define

k
W = Zw, = cumulative weight up to case k
1=1
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_ _ W2
Gijk) = Gijk-1) + (% - Xi(k—l))(xjk - Xj(k—l))[wk ‘—k]
Otherwise,
Ciitk) = Sk + Wik Xk

where

The sample covariance §; is computed asthefinal G; dividedby C-1.

Sweep Operations (Dempster, 1969)

For aregression model of the form
Yo =Bo+BiXy +BoXoi ++ BpXpi +§

sweep operations are used to compute the least squares estimates b of 3 and the
associated regression statistics. The sweeping starts with the correlation matrix R.
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Let R be the new matrix produced by sweeping on the kth row and column of R.
The elementsof R are

= 1
kk »
SO
r,k:'—k, izk
Mkk
~ I .
rkj:—J, ]¢k
Mek
and
FiMge = Fi N
=K Tk, 2k
Mk

If the above sweep operations are repeatedly applied to each row of Ry, in

R R
R:( 11 12)
Ro1 R

where R4, contains independent variables in the equation at the current step, the

resultis

ﬁz[Rﬁ -RiR 1 J
RuRii Rz —RaRIiR1p,

The last row of

RyR1i

contains the standardized coefficients (also called BETA), and

-1
R2 ~RxR1iRp»
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can be used to obtain the partial correlations for the variables not in the equation,
controlling for the variables already in the equation. Note that this routineisits own
inverse; that is, exactly the same operations are performed to remove a variable as
to enter avariable.

Variable Selection Criteria

Let rj be the element in the current swept matrix associated with X; and Xj.
Variables are entered or removed one at atime. X, iseligible for entry if it isan
independent variable not currently in the model with

N« =t (tolerance with a default of 0.0001)

and also, for each variable X; that is currently in the model,

o
rjj— kK t<1
N

The above condition is imposed so that entry of the variable does not reduce the
tolerance of variables already in the model to unacceptable levels.
The F-to-enter valuefor X iscomputed as

- pY-
F —to—entery :—(Cr P Vl)vk
yy VK

with 1 and C— p"'~1 degrees of freedom, where p" is the number of coefficients
currently in the model and

el
v, = KTy
Mkk

The F-to-remove valuefor X iscomputed as

(C— PD)|V|<|

F —to-remove, =
r

yy

withland C- pD degrees of freedom.
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Methods for Variable Entry and Removal

Stepwise

Forward

Backward

Five methods for entry and removal of variables are available. The selection
process is repeated until the maximum number of steps (MAXSTEP) is reached or
no more independent variables qualify for entry or removal. The agorithms for
these five methods are described below.

If there are independent variables currently entered in the model, choose X such
that F -to—remove, is minimum. Xy is removed if F —to-remove, < Fy
(default = 2.71) or, if probability criteria are used, P(F —to-remove,) > Pyy
(default = 0.1). If the inequality does not hold, no variable is removed from the

model.
If there are no independent variables currently entered in the model or if no
entered variable is to be removed, choose X, such that F -to—enter, is

maximum. X, is entered if F-to—enter, >F, (default = 3.84) or,
P(F —to-enter,) < R, (default = 0.05). If the inequality does not hold, no

variable is entered.
At each step, all eigible variables are considered for removal and entry.

This procedure is the entry phase of the stepwise procedure.

This procedure is the removal phase of the stepwise procedure and can be used only
after at least one independent variable has been entered in the model.

Enter (Forced Entry)

Choose X such that g is maximum and enter X, . Repeat for &l variables to
be entered.



REGRESSION 7

Remove (Forced Removal)

Choose Xy such that ry, isminimum and remove Xy . Repeat for all variablesto

be removed.
Statistics
Summary
For the summary statistics, assume p independent variables are currently entered in
the equation, of which a block of q variables have been entered or removed in the
current step.
Multiple R
R=1-ry
R Square
2 _
R®=1-ry

Adjusted R Square

(1-R)p

2 — 2
d

R Square Change (when a block of q independent variables was added or removed)

2 _p2 2
AR = Reyrrent — Rprevious
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F Change and Significance of F Change

AR (C-p)
_ Q(l_ I:‘)czurrent)
AR?(C-p”-q)

CI( RSrevi ous — l)

for the removal of qindependent variables

for the addition of g independent variables

the degrees of freedom for the addition are q and C- pD, while the degrees of
freedom for the removal areqand C - pD—q .
Residual Sum of Squares
SSe =1y (C-1)Syy
with degrees of freedom C - pD.
Sum of Squares Due to Regression
SSr =R?(C-1)S,,

with degrees of freedom p.
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ANOVA Table

Analysis of Variance ‘ df ‘ Sum of Squares ‘ Mean Square
Regression ‘p ‘ SSk ‘ (SSR)/p

a
' ot | o)

Variance-Covariance Matrix for Unstandardized Regression Coefficient Estimates

A sguare matrix of size p with diagona elements equa to the variance, the below
diagonal elements equal to the covariance, and the above diagonal elements equal

to the correlations:

_ Ny Sy

R e

cov(by.b; ) = Ty Sy

VSS; (C- )

My

kT

cor(by,b;) =

Selection Criteria

Akaike Information Criterion (AIC)

AIC=CIn(%)+2pD



10 REGRESSION

Amemiya’s Prediction Criterion (PC)

(1-R?)(c+p")

PC =
C—pD

Mallow’s C, (CP)

CP= SS; +2p -C
g

where 2 is the mean square error from fitting the model that includes al the

variablesin the variable list.

Schwarz Bayesian Criterion (SBC)

S8BC = cm(%) + pHin(C)

Collinearity

Variance Inflation Factors

Tolerance

Tolerancg = r;;
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Eigenvalues, /,

The eigenvalues of scaled and uncentered cross-product matrix for the
independent variables in the equation are computed by the QL method
(Wilkinson and Reinsch, 1971).

Condition Indices

_max)lj
Nk = A

Variance-Decomposition Proportions

Let
Vi :(Vil!""vip)
be the eigenvector associated with eigenvalue A; . Also, let
—2 -
‘Dij _Vij //]| and CDJ' = qu‘ij
The variance-decomposition proportion for the jth regression coefficient associated
with the ith component is defined as

7Ty = ®jj [

Statistics for Variables in the Equation

Regression Coefficient b,

o ./
@for k=1...,p
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The standard error of by, iscomputed as

A 95% confidence interval for 8, is constructed from

b £ T L 005, ot

If the model includes the intercept, the intercept is estimated as

bozy‘ibkik
=1

The variance of by is estimated by
(C-Dr _ P
R nga 23S

C pD)

Beta Coefficients

Betay = I'yk
The standard error of Betay is estimated by

I'yyl'kk
Cc- pD

OBeta, ~
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F-test for Betay
5 2
F = AGA
O Betay,
with 1and C - p" degrees of freedom.

Part Correlation of X, with Y

r
Part - Corr(Xy) = X
Mkk
Partial Correlation of X, with Y
r
Partial — Corr(Xy) = s

,;rkkryy —rykrky
Statistics for Variables Not in the Equation

Standardized regression coefficient BetaE if X, enters the equation at the next step

BetaE =—
Nk

The F-test for BetaE

_A0_4)\2
el (C p 1)ryk
rkkryy - rfk

with 1 and C - p" degrees of freedom
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Partial Correlation of X, with Y

r
Partial( Xy ) = s
ryyrkk
Tolerance of X,

Tolerance, = ry

Minimum tolerance among variables already in the equation if X, enters at the next step is

. 1
min | —————— Mg
Elgp{fn‘ = (") /e ]

Residuals and Associated Statistics

There are 19 temporary variables that can be added to the active system file. These
variables can be requested with the RESIDUAL subcommand.

Centered Leverage Values

For all cases, compute

p P .
o) k.. .
— if intercept isincluded
C‘l)jzlkzzl VSiS«

otherwise
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For selected cases, leverage is h ; for unselected case i with positive caseweight,
leverageis

e gi {(Vl\/+h)/(l+vl\/+hi)_v\/l+1} if intercept isincluded

- h /(1+h /g) otherwise

Unstandardized Predicted Values

p
Zbk Xii if no intercept
- _1&E
: p
bo + bk in otherwise

Unstandardized Residuals

& =YY

Standardized Residuals

S if no regression weight is specified
ZRESID, =1{ S

SYSMIS otherwise

where sisthe square root of the residual mean square.
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Standardized Predicted Values

M-y if no regression weight is specified
ZPRED, ={

SYSMIS otherwise

where sd is computed as

Studentized Residuals

for selected caseswith g >0

otherwise

1-h for selected cases withc; >0
DRESD; = e,/( h) ) .
g otherwise



Studentized Deleted Residuals

DRESID;

for selected caseswith g >0
%)

DRESD; =
otherwise

(1+R)/a

where i) is computed as

1 (C—p[’)s2 )
N = ~——— DRESID;
i \/C—pD—l\/

1-h

Adjusted Predicted Values

ADJPRED, =Y, - DRESID,

DfBeta

_ gie,(X’WX)_lxit

DFBETA =b-h(i) R

where

Xt = (lxjj,~--,Xpi) if intercept isincluded
" |(Xgh Xp)  ottherwise

and W =diag(wy,...,w;) .
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Standardized DfBeta

b; —b; (i
SDBETA; =—— 10

. -1
S (X Wx)

i
where b; - bj (i) isthejth component of b —b(i).

DfFit

DFFIT; = X;[b-b(i)] :f_—qﬁ

Standardized DfFit

DFFIT,

s

DFIT, =

Covratio

2P’
COVRATIO :[s(—:] x 1—1ﬁ

Mahalanobis Distance
For selected cases with ¢ >0,

(C-D)h  if intercept isincluded

MAHAL; = _
Ch otherwise
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For unselected cases with ¢ >0

Ch/ if intercept is included

MAHAL; =
! {(C+1)h’ otherwise

Cook’s Distance (Cook, 1977)

For selected caseswith ¢ >0

COOK. = (DRESDizﬁgi)/[Sz(pﬂ)] if intercept isincluded
. (DRESIDiZh gi )/(Szp) otherwise

For unselected cases with ¢, >0

(DRESI Diz[h' +Vt))/[§2(p+1)] if intercept isincluded
COOK; =
5%p

(DRESID?N) / (5%p) otherwise

where h' isthe leverage for unselected casei, and 52 is computed as

1 o0 v 1 o o
32 = C—p{sseﬁ} [1 h _1+W)] if intercept isincluded
1 .
C- p+1[SSE +ef(1- h')] otherwise
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Standard Errors of the Mean Predicted Values

For all the cases with positive caseweight,

SEPRED; = 5\/“/_9 if intercept isincluded
5\/h/_9i otherwise

95% Confidence Interval for Mean Predicted Response

LMCIN; =¥, ~t, e o o7 SEPRED,

UMCIN; =¥, +t 1SEPRED;

0.025,C-p

95% Confidence Interval for a Single Observation

LICIN. = ?' 005, c-p” (F‘. ’fl)/gi if intercept isincluded
i - v .
Yi —1o.025,c-p (h +1)/ g,  otherwise
iy < | ¥ los oS (R +1)/g it interceptisincluded
i - v, .
Yi +10.025 c-p (h +l)/ g otherwise

Durbin-Watson Statistic
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Partial Residual Plots

The scatterplots of the residuals of the dependent variable and an independent
variable when both of these variables are regressed on the rest of the independent
variables can be requested in the RESIDUAL branch. The agorithm for these
residualsisdescribed in Velleman and Welsch (1981).

Missing Values

By default, a case that has a missing value for any variable is deleted from the
computation of the correlation matrix on which al consequent computations are
based. Users are allowed to change the treatment of cases with missing values.
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