PLUM

The purpose of the PLUM procedure is to model the dependence of an ordinal categorical
response variable on a set of discrete and/or continuous independent variables.

Since the choice and the number of response categories can be quite arbitrary, it is
essential to model the dependence such that the choice of the response categories does not
affect the conclusion of the inference. That is, the final conclusion should be the same if any
two or more adjacent categories of the old scale are combined. Such considerations lead to
modeling the dependence of the response on the independent variables by means of the
cumulative response probability.

Notations

Y The ordinal response variable, which takes integer valuesfrom 1to J, J= 2.

J The number of categories of the ordinal response.

m The number of subpopulations.

XA mx pA matrix with vector-element )qA, the observed values at the ith
subpopul ation, determined by the independent variables specified in the
command.

X mMXx p matrix with vector-element X;, the observed values of the location
model’s independent variables at tttesubpopulation.

z mX g matrix with vector-element;, the observed values of the scale
model’'s independent variables at ttiesubpopulation.

fijs The frequency weight for theth observation which belongs to the cell
corresponding t& = | at subpopulation

nj The sum of frequency weights of the observations that belong to the cell
corresponding t& = j at subpopulation

fij The cumulative total up to and includiNg= ] at subpopulation

n The marginal frequency of subpopulation

n The sum of all frequency weights.

Vij The cumulative response probability up to and includng j at
subpopulation.

TT; The cell response probability correspondind/te: j at subpopulation
(J —1) x1 vector of threshold parameters in the location part of the model.

B px1 vector of location parameters in the location part of the model.

T qx1 vector of scale parameters in the scale part of the model.

B— (GT BT TT)T The {(J-1)+p+q} % 1 vector of unknown parameters in the general model.

B— (éT éT fT)T The {(J-1)+p+q} % 1 vector of maximum likelihood estimates of the
o parameters in the general model.

B = (éT BT)T The {(J-1)+p} % 1 vector of maximum likelihood estimates of the parameters
’ in the location-only model.

Vil The cumulative response probability estimate based on the maximum
likelihood estimateB in the general model.



Vij The cumul ative response probability estimate based on the maximum
likelihood estimateB in the location-only model.

7ATi i The cell response probability estimate based on the maximum likelihood
estimate B in the general model.

T, i The cell response probability estimate based on the maximum likelihood
estimate B in the location-only model.

é Number of non-redundant parameters in the general model. If all parameters

are non-redundant, & = (J-1) + p+ q.

Number of non-redundant parameters in the location-only model. If all
parameters are non-redundant, € = (J-1) + p.

M

Data Aggregation

Observations with negative or missing frequency weights are discarded. Observations are
aggregated by the definition of subpopulations. Subpopulations are defined by the cross-
classifications of the set of independent variables specified in the command.

Let n be the marginal count of subpopulation i,

J

n = Znij

j=1

If there is no observation for the cell of Y = j at subpopulation i, it is assumed that n; =0,

provided that n; # 0. A non-negative scalar 0 [0, 1) may be added to any zero cell (i.e., cell
with n; = 0) if itsmarginal count n; is nonzero. The value of J is zero by defaullt.

Data Assumptions

Model

Let (nil,...,niJ)T be the Jx1 vector of counts for the categories of Y at subpopulation. It is
assumed that each (njq,...,Nn, J)T is independently multinomial distributed with probability
vector (7Til,...,7TiJ)T of dimension Jx1 and fixed total n.

Let y; = Prob( Y<j| x;) be the cumulative response probability for Y, i.e,

i
Yij = Zﬂn
I=1

forj=1, ...,J-1. Notice thaty;; =1, hence only the firsi-1y's are needed in the model.



General Model

The general model is given by

po= BB
! o(3)
where 77, is related to the cumulative probability ; by alink function link( y; ),

i = link(yj;),

forj=1,...,J-1and =1, ...,m. Possible forms of link¢) are

log(—Y) Logit link
1-y
. log(—log(1-y)) Complementary log-log link
ink(¥) =\ _jog(—log(y))  Negative Log-log link
o L(y) Probit link

tan(77(y — 05)) Cauchit (Inverse Cauchy) link

The numerator in the right hand side of the general model specifiex#tien of the model,
0 - [3Txi. In the location part of the modd, is the vector of thresholds. Values of the
thresholds are subject to a monotonicity propéiys...<8;_4. B is the vector of location
parameters.

The denominatorg(z), is thescale. Possible forms ofr(z)are

o(2) = 1 if unity scaleis assumed
B exp(rTz) if non - constant scale is assumed’

T is the vector of scale parameters.

Location-Only Model

If o(z)=1is assumed, then;; =6; - BTxi. The general model is said to reduce to the

location-only model. The parameteB reduces t@B = (eT ,BT)T.

Log-likelihood Function

The log-likelihood of the model is



m J-1
Z @i =i+ 9(Pij)
i=1 j=1
in which r;; isthe cumulative total
rij :an,

k=1

the argument ¢;; is given by

A
y“
¢ij =log ———1,
Yijs1 Vi

and the function g(¢@) is

9(¢) = log(1+exp(¢)) = Iog(

Yij+1 ’
Yij+17Yij

Notice that a constant term c:z_mllog{ni 1 (nq!...nigN} which is independent of the
1=

unknown parameters has been excluded here. Thus, | is in fact the kernel of the true log-

likelihood function.

Further details of the log-likelihood function can be found at the end of this chapter.

Derivatives of the Log-likelihood Function

Details of derivatives can be found at the end of this chapter.

First Derivative

Thefirst derivative of | with respect to B,k =1,...

m J-1

8Bk g; agy 1k

in which

dl; Vi
' _r. 1 ,
a(Ijij I(H) Ij+1

;(J_1)+ p+qyls



Vij+1

VWi vip)
and
Vij Vi 9ijn
Qj = Rik 5~ Rj+ Ey
oo T i 0
in which
5.
— ifl<k<(J-1)
exp( ' z)
a . —Xire_ (1
R = o _ | k(-] if(J-D+1<k<(I-D+p

By | exp( 'z)
“Zik—{(3-D+pnTj T (-D+p+1lsk<(I-D+p+q

Jjk =1ifj=k Ootherwise,and P, =0.Fori=1, ...mj=1,...,J1,

yijA=Vij) Logit link
—(1-yjj)log(l-y;;) Complementary log-log link
aﬂ: =Yij log(yij) Negative Log-log link
i ADL(yy)) Probit link
cos? (ni{y;; —08))/ T Cauchit link

and dy;; /9ni; =0.

Second Derivative

The second derivative is

AR <Nk al AUj A . 9k
_Z Uy Qe + === Qi + = —Ujj =
_ BB 2 9B K ag; | 9B,

fors, k=1, ...,0-1) +p +q. The first term of the equation is

22l Mij+1

90 y.0y =
dBsdg; Qe Vij+1

Uij QjsQijk -

The second term is



ol 9Uj;
d¢ij dBg

N\ N

Yij 1 1

Qik =_£rij _rij+l—J —UijQjs 7 (Ui j+1Q j+1s ~UjjQjs) |Qik
Vi | ¥ i —vip)?

To caculate the third term, notice that

dQjk IRk i - % Rk Vi Yijn
- ]

dBs dBs 91 dBdntj  9Bs  Viju1 9Mija1
Qjs Vij+1 Vi 0%ijn
“Rjsk—— Ry ————
Vij+1 9Mija1 Vij+1 9BsdNiji1
where
1<k<(J-D+pandl<s<(I-D+
Pk (J-D+p J-D+p

B “Zsq{-D+p] Rk 1sks(@-D+pand (J-D+p+1<s<(J-D+p+q
* | =Zke-prpRis (I-D+p+isk<(I-D+p+q
and dRy, / 0Bg = 0. Moreover,

%y i
=Rj Ris
dBsI1;; onij

and azyiJ 19Bgdn; =0. R; hasthefollowing form:

1-2y; Logit link

1+log(1-yj) Complementary log- log link
Rj = —(L+logyij) Negative Log-log link

~@ @7 (y;))@ H(yy;)  Probit link

sin(2r1yij ) Cauchit link

The third term can be calculated by applying these equations.

Expectation of the Second Derivative

Fors k=1,..,0-1)+p+q,



azl N m J-1 82|- N
E = El—1 U0,
(BBSBBKJ Z 9BIP; ”Q“‘J

i=1 j=1
m J-1 1
ij+
= Z B —— UijQ]SQ]kJ
i1 o1 Yij+1
m J-1
= _Zni UI]Q]SQ]k
izl j=1

Parameter Estimation

Maximum Likelihood Estimate

To obtain the maximum likelihood estimate of B, a Fisher Scoring iterative estimation
method or Newton-Raphson iterative estimation method can be used. Let B® pe the
parameter vector at iteration t and dl / 9B 1) be avector of the first derivatives of | evaluated
a B=B". Moreover, let A(V be a{(J-1)+p+q} x{(J-1)+p+q} matrix such that

2
__ Newton - Raphson approach
) dBgdBy B_g()
[2€], = ;
sk 22 . :
—E Fisher Scoring approach
dBgsIBy B_g

For a location-only model, the corresponding formulas use the first (J-1)+p elements of
a1 19B® and the upper { (3-1)+p} x{ (3-1)+p} submatrix of AV,

The parameter vector B at iteration t +1 is updated by B where

ADBED) _ AR®M 4 g 9
aB(t)

and &> 0 is astepping scalar such that I(B(”l))—I(B(t))z 0.

Stepping

Use step-halving method if I(B(”l))— I(B(t) ) < 0. Let V be the maximum number of stepsin
step-halving, the set of valuesof &is{1/2v=0, ...,V-1}.



Starting Values of the Parameters
Location-Only Model

-
If alocation-only model is specified, set BO = (G(O)T ,OT) where

forj=1, ...,J-1.

General Model

If a general model is specified, first ignore the scale part (i.e., by assuming+h@tand

T
treat the model as if it is a location-only model) and B = (S(O)T ,OT) as the starting
e =TT _
value to obtain the maximum likelihood estim&e- (OT,BT) . After B is obtained, find
A AT oA T
the maximum likelihood estimataz(eT,BT,fT) of the general model by starting at

(678707

-
The above practice is essentially the same as taking BO = (9(0) To' ,OT) . The advantage

is that the maximum likelihood estimate B can be obtained in the process of finding B .

Ordinal Adjustments for the Threshold Parameters

If the monotonicity property 8, <...< 8;_; isnot preserved at the end of any iteration, ad hoc

adjustment will be taken before the next iteration starts. If 6{" > 61"); for some j, then both

o) and 611); are set to (650 +6();)/2 before the next iteration. This value is then

compared with H(jtlz and so on.

Convergence Criteria

Given two convergence criteria & >0 and €,>0, the iteration is considered to be
converged if one of the following criteria are satisfied:

1 ‘I(B(”l))—I(B(t))‘ <&

2, m_ax‘Bi(”l) - B,t‘ <&p.
I



Statistics

Model Information

Final Model, General

The value of —2log-likelihood of the model is given by
—21(B)
where I(é) isthe value of the log-likelihood evaluated at B.

Final Model, Location-Only

If unity scale is assumed, the general model reduces to the location-only model. The value of
—2log-likelihood of the model is given by

~21(B).

Initial Model, Intercept-Only

In the initial model, when the intercepts are the only parameters in the model, the parameter

T
vector isB(® = (9(0) To' ,OT) . The value of the —2log-likelihood is

—21(B(9y.

Model Chi-Square

The value of the Model Chi-square statistic is given by the difference between any two
nesting models of interest.

General Model versus Intercept-Only Model

The following statistic is available when a general model is specified. The Model Chi-square
statistic is given by

—21(B(D)—_21(B).

Under that null hypothesis théty:3 = 0 and T = 0, the Model Chi-square is asymptotically
chi-squared distributed with — (J — 1) degrees of freedoms.



Location-Only Model versus Intercept-Only Model
The following statistic is available when a location-only model is specified. The Model Chi-
square statistic is given by

—21(B(D)—_21(B).

Under that null hypothesis that Hgy:3 =0, the Model Chi-square is asymptotically chi-
squared distributed with € — (J — 1) degrees of freedoms.

General Model versus Location-Only Model

The following statistic is available when a general model is specified. The Model Chi-square
statistic is given by

—21(B)-2I(B).

Under that null hypothesis thatiy:t =0, the Model Chi-square is asymptotically chi-
squared distributed wite—¢é degrees of freedoms.

Score Test for Equal Slopes Assumption

For location-only model, a score test of parallel lines in the location is performed. If the
regression lines are not parallel, the location can be specified as

iy =6;— BjTx

forj =1, ...,J-1. That is, the location parametd¥$ (or slopes) vary with the levels of the

response. The parameter for the above “non-parallel” location-only model is
B=(®",p]....BJ_1)" which is of dimension {£1)+@-1)p}x1. The first derivative

ol /0B of the log-likelihood is the same as in the “parallel” model, except that
Rk =0 9By is replaced by the following:

P _8/7”- 5]k 1<k<(J-D
Ik = B _Xi[k—{(J—l)+Sp}] (J-D+sp<k<(I-D+sp+p, SZL...,(J—Z).

Similarly, the expected value of the second derivative is the same as in the parallel model,
except that thej is replaced by the above equation.

To test the null hypothesis of parallelisiy:3; =...= 3 ;_4, find the maximum likelihood

estimate B of the parallel location-only model and the maximum likelihood estimate I§ of
the non-parallel model. The Model Chi-sguare statistic is given by

_2I(B)-2I(B).
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Under the null hypothesis, the Model Chi-square statistic is asymptotically chi-squared
distributed with (k-2)p degrees of freedoms.

Pseudo R Squares

Cox and Snell's R Square

The Cox and Snell'R? for a general model is

2

2 . L(B(O)) n
Rcs=1 [ L(é) ]

Replaceé by B for a location-only model.

Nagelkerke’s R Square

The Nagelkerke'& is

N 1— L(B(O))Zln

McFadden’s R Square

The McFadden'R? for a general model is

> . (1B "
-,

Replaceé by B for a location-only model.

Predicted Cell Counts & Cumulative Totals

Predicted Cell Counts

The estimated cell response probability based on the maximum likelihood estimate for the
general model is

f/il j=1
;Tij: f’ij—f/ij_l i=2,...,J-1
1-¥i3a j=13

11



At each subpopulation i, the predicted count for response category Y = j is
fij = Iy 7
The (raw) residual is nj —1ij and the standardized residual is (ny; — ;) / |/ 75 (1- 77;;) -

Replace j/;; by yij, 75 by 75;, and fy; by i for alocation-only model.

Predicted Cumulative Totals, General Model

The predicted cumulative total up to and including Y = j is
fij =ny f’ij ,
The (raw) residual is rj; —f; and the standardized residual is (rj —f;) /[y 71 (1= 7) -
Replace f/ij by ;7”- and rj; by F;; for alocation-only model.
Goodness of Fit Measures

Pearson Goodness of Fit Measure

The Pearson goodness of fit measure for ageneral model is

m J 2 \2
(nj =Ny 7z;;)
X2 = _
22 ni r[ij

i=1 j=1

Under the null hypothesis, the Pearson goodness-of-fit statistic is asymptotically chi-squared
distributed with m(J — 1) — & degrees of freedom.

Replace frij by irij and é by € for alocation-only model.

Deviance Goodness of Fit Measure

The Deviance goodness of fit measure for ageneral model is

m J M \
D=2 n; lo !
220 g(”ifTiiJ

i=1 j=1

Under the null hypothesis, the Deviance goodness-of-fit statistic is asymptoticaly chi-
squared distributed with m(J — 1) — & degrees of freedom.

Replace fTij by 75; and € by € for alocation-only model.

12



Covariance and Correlation Matrices

The estimate of the covariance matrix of B is

2
__o1 Newton - Raphson method
. dBoB| .
Cov(B) = o
g9 Fisher Scoring method
dBoB |

Let ¢ bethe { (J-1)+p+q} x 1 vector of the square roots of the diagonal elementsin Cov(é) .
The estimate of the correlation matrix of B is

Cor(B) = Diag(6)Cov(B)Diag(6 7 }).
Replace B by B and 6 by 6 (a{(J—1)+ p} x1 vector) for alocation-only model.

Parameter Statistics

An estimate of the standard deviation of By is & . The Wald statistic for By is

~

Waldy, = B
Ok

Under the null hypothesis that Hq: B, =0, Wald, is asymptotically chi-squared distributed
with 1 degree of freedom.

Based on the asymptotic normality of the parameter estimate, a 100(1-a) % Wald
confidence interval for By is

B 21120k
where z_,,, isthe upper (1- a 12)100" percentile of the standard normal distribution.
Replace ék by B, and &, by &} for alocation-only model.

Linear Hypothesis Testing
For ageneral model, let L be amatrix of coefficients for the linear hypotheses
HoLB=c

where c isa k x1 vector of constants. The Wald statistic for Hg is

13



wald(L,c) = (LB—c)"{LCov(B)L"} }(LB-C¢).

Under the null hypothesis, Wald(L,c) is asymptoticaly chi-squared distributed with |
degrees of freedom, wherel istherank of L .

Replace B by B for alocation-only model.
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