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MIXED 

Overview 
This document summarizes the computational algorithms discussed in Wolfinger, 
Tobias and Sall (1994). 

Notation 
The following notation is used throughout this chapter unless otherwise stated: 

 
θ  Overall covariance parameter vector. 

θG  A vector of covariance parameters associated with random effects. 

θk  A vector of covariance parameters associated with the k th  random effect. 

θR  A vector of covariance parameters associated with the residual term. 

K  Number of random effects. 

SR  Number of repeated subjects. 

Sk  Number of subjects in k th  random effect. 

V( )θ  The n n� covariance matrix for y . 

�V ( )s θ  First derivative of V( )θ  with respect to the s th  parameter in θ .  

��V ( )st θ  Second derivative of V( )θ  with respect to the s th  and t th  parameters in θ .  

R( )θR  The n n� covariance matrix for ε . 

�R ( )s Rθ  First derivative of R( )θR  with respect to the s th  parameter in θR  

��R ( )st Rθ  Second derivative of R( )θR with respect to the s th  and t th  parameters in θR . 

G( )θG  The covariance matrix of random effects. 

�G ( )s Gθ  First derivative of G( )θG  with respect to the s th  parameter in θG . 
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��G ( )st Gθ  Second derivative of G( )θG  with respect to the s th  and t th  parameters in θG . 

V ( )k kθ  The covariance matrix of the k th  random effect for one random subject.  

�V ( ),k s kθ  First derivative of V ( )k kθ  with respect to the s th  parameter in θk . 

��V ( ),k st kθ  Second derivative of V ( )k kθ  with respect to the s th  and t th  parameters in θk . 

y  n �1 vector of observed values of the dependent variable. 

X  n p�  design matrix of fixed effects. 

Z n q�  design matrix of random effects. 

r  n �1 vector of residuals. 

β  p �1 vector of fixed effects parameters. 

γ  q �1 vector of random effects parameters. 

ε  n �1 vector of residual error terms. 

Wc   n n�  diagonal matrix of case weights. 

Wrw  n n�  diagonal matrix of regression weights. 

Model 

In this document, we assume a mixed effect model of the form 

y X Z� � �β γ ε   (1) 

In this model, we assume that ε  is distributed as N[ ( )]0, R θR  and γ  is 
independently distributed as N[ G( )]0, θG . Therefore y  is distributed as 

N ,V( )Xβ θ , where V( ) G( ) R( )θ θ θ� �Z ZG R
T . The unknown parameters 

include the regression parameters in β  and covariance parameters in θ . Estimation 
of these model parameters relies on the use of a Newton-Ralphson or scoring 
algorithm. When we use either algorithm for finding MLE or REML solutions, we 
need to compute V ( )-1 θ  and its derivatives with respect to θ , which are 
computationally infeasible for large n . Wolfinger et.al.(1994) discussed methods 
that can avoid direct computation of V ( )-1 θ . They tackled the problem by using 
the SWEEP algorithm and exploiting the block diagonal structure of G( )θG  and 
R( )θR . In the first half of this document, we will detail the algorithm for mixed 
model without subject blocking. In second half of the document we will refine the 
algorithm to exploit the structure of G( )θG  and this is the actual implementation of 
the algorithm. 
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If there are regression weights, the covariance matrix R( )θR  will be replaced by 

R ( ) R( )* / /θ θR Rrw rw
� - -W W1 2 1 2 . For simpler notations, we will assume that the 

weights are already included in the matrix R( )θR  and they will not be displayed in 
the remainder of this document. When case weights are specified, they will be 
rounded to nearest integer and each case will be entered into the analysis multiple 
times depending on the rounded case weight. Since replicating a case will lead to 
duplicate repeated measures (Note: repeated measures are unique within a repeated 
subject), non-unity case weights will only be allowed for R( )θR  with scaled 
identity structure. In MIXED, only cases with positive case weight and regression 
weight will be included analysis. 

Fixed Effects Parameterization 

The parameterization of fixed effects is the same as in the GLM procedure. 

Random Effects Parameterization 

If there are K  random effects and Sk  random subjects in the k th  random effect, the 
design matrix Z will be partitioned as 

Z Z Z Z1 2� � K , 

where Zk  is the design matrix of  the k th  random effect. Each Zk  can be 
partitioned further by random subjects as shown below: 

Z Z Z Z1 2k k k kSk
� � , k K� 1, ,� . 

The number of columns in the design matrix Zkj  (the j th  random subject of the 

k th  random effect) is equal to the number of levels of the k th  random effect 
variable. 

Under this partition, the G( )θG  will be a block diagonal matrix which can be 
expressed as 

G( ) V ( )θ θG k
K

S k kk
� � �

=1 I . 
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It should also be noted that each random effect has its own parameter vector θk , 
k K� 1, ,� , and there are no functional constraints between elements in these 
parameter vectors. Thus θ θ θG K� 1, ,�� � . 

Repeated Subjects: 

When the REPEATED subcommand is used, R( )θR  will be a block diagonal 

matrix where the i th  block is R ( )i Rθ , i SR� 1, ,� . That is, 

R( ) R ( )θ θR i
S

i R
R� �
=1  

The dimension of R ( )i Rθ  will be equal to the number of cases in one repeated 
subject but all R ( )i Rθ  share the same parameter vector θR . 

Likelihood Functions 

Recall that the –2 log-likelihood using maximum likelihood estimation (ML) is 

� � � �-2 21�MLE
T( , ) log|V( )| r( ) V( ) r( ) logβ θ θ θ θ θ n Q  (2) 

and the –2 log-likelihood using restricted maximum likelihood estimation (REML) 
is 

� � � � � �- -2 2�REML ( ) log|V( )| r( ) V( ) r( ) log| | ( ) logθ θ θ θ θT 1 1X’V X n p Q  (3) 

where n  is the number of observations and p  is the rank of fixed effect design 
matrix. From (2) and (3), we can see that the key components of the likelihood 
functions are 

�

�

�

1

2
1

3
1

( ) log|V( )|

( ) r( ) V ( ) r( )

( ) log| V ( ) |.

θ θ

θ θ θ θ

θ θ

�

�

�

-

-

T

TX X

  (4) 
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Therefore, in each estimation iteration, we need to compute �1( )R , �2 ( )R  and 
�3( )R  as well as their 1st and 2nd derivatives with respect to θ . 

Newton & Scoring Algorithms 

Covariance parameters in θ  can be found by maximizing (2) or (3); however, there 

are no closed form solutions in general. Therefore Newton and scoring algorithms 

are used to find the solution numerically, as outlined below: 

1. Compute the starting parameter values and initial log-likelihood (REML or 
ML). 

2. Compute the gradient vector g  and Hessian matrix H  of the log-likelihood 
function using the previous iteration’s estimate θi-1. (See later section for 
computation of g  and H ) 

3. Compute the new step d H g1� � - . 

4. Let S � 1. 

5. Compute estimates of of the i th  iteration   dθ θi i� �
-1 S . 

6. Check to see if θi  generates valid covariance matrices and improve the 
likelihood. If not, reduce S  by half and repeat step (5). If this process is 
repeated for a pre-specified number of times and the stated conditions are still 
not satisfied, stop. 

7. Check for convergence of the parameter estimates. If convergence criteria are 
met, then stop. Otherwise, go back to step (2).  

Newton’s algorithm performs well if the starting value is close to the solution. In 
order to improve the algorithm’s robustness to bad starting values, the scoring 
algorithm is used in the first few iterations. This can be done easily by applying 
different formulae for the Hessian matrix at each iteration. Apart from improved 
robustness, the scoring algorithm is faster due to the simpler form of the Hessian 
matrix. 

Convergence Criteria 

There are three types of convergence criteria: parameter convergence, log-
likelihood convergence and Hessian convergence. Parameter and log-likelihood 
convergence are further subdivided into absolute and relative. If we let ε  be some 
given tolerance level and 
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θs i,  be the s th  parameter in the i th  iteration, 

 i�  be the log-likelihood in log-likelihood in the i th  iteration, 

 ig  be the gradient vector in the i th  iteration, 

 and iH  be the hessian matrix in the i th  iteration,  

then the criteria can be written as follows,  
 

Absolute parameter convergence: εθθ <− − ||max 1i,si,ss  

 

Relative parameter convergence:  ||max 1i,s1i,si,ss −− <− θεθθ  

 

Absolute log-likelihood convergence:  ε<− − || 1ii ��  

 

Relative log-likelihood convergence:  |||| 1i1ii −− <− ��� ε  

 

Absolute Hessian convergence:  ε<−
i

1
i

T
i gHg  

 

Relative Hessian convergence: || i�ε<−
i

1
i

T
i gHg  

Starting value of Newton’s Algorithm 

If no prior information is available, we can choose the initial values of G  and R  
to be the identity matrix. However, it is highly desirable to estimate the scale of the 
variance parameter. By ignoring the random effects, and assuming the residual 
errors are i.i.d. with variance T 2, we can fit a GLM model and estimate T 2 by the 
residual sum of squares �T 2. Then we choose the starting value of Newton’s 
algorithm to be 

1

ˆ 2

+
=

K
σ

kG  and 
1

ˆ 2

+
=

K
σ

R . 



MIXED 

 

7

Confidence Intervals of Covariance Parameters  

The estimate �θ  (ML or REML) is asymptotically normally distributed. Its variance 

covariance matrix can be approximated by 1H2 −− , where H  is the Hessian 

matrix of the log-likelihood function evaluated at �θ . A simple Wald’s-type 
confidence interval for any covariance parameter can be obtained by using the 
asymptotic normality of the parameter estimates, however it is not very appropriate 
for variance parameters and correlation parameters that have a range of ),0[ ∞  and 

]1,1[−  respectively. Therefore these parameters are transformed to parameters that 

have range ),( ∞−∞ . Using the uniform delta method (van der Vaart, 1998), these 

transformed estimates still have asymptotic normal distributions.  

Suppose we are estimating a variance parameter 2σ  by 2
nσ̂  that is distributed as 

)]ˆ(Var,[N 2
n

2 σσ  asymptotically. The transformation we used is )log( 2σ  which 

can correct the skewness of 2
nσ̂ .  Moreover )ˆlog( 2

nσ  has the range ),( ∞−∞  

which matches that of normal distribution. Using the delta method, one can show 

that the asymptotic distribution of )ˆlog( 2
nσ  is )]ˆ(Var),[log(N 2

n
42 σσσ − . Thus, 

a %100)1( α−  confidence interval of )log( 2σ  is given by 

])ˆ(Varz)ˆlog(,)ˆ(Varz)ˆ[log( 2
n

2
n2/1

2
n

2
n

2
n2/1

2
n σσσσσσ αα

−
−

−
− +−  

where 2/1z α−  is the upper )2/1( α−  percentage point of standard normal 

distribution. By inverting this confidence interval, a %100)1( α−  confidence 

interval for 2σ  is given by 

( ) ( )])ˆ(Varz)ˆlog(exp,)ˆ(Varz)ˆlog([exp 2
n

2
n2/1

2
n

2
n

2
n2/1

2
n σσσσσσ αα

−
−

−
− +−

 

When we need a confidence interval for a correlation parameter ρ , a possible 

transformation will be its generalized logit 
)]1/()1log[(5.0)(harctan ρρρ −+= . The resulting confidence interval for ρ  

will be 
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( )( ) ( )( )])ˆ(Var)ˆ1(zˆharctantanh,)ˆ(Var)ˆ1(zˆharctan[tanh 12
2/1

12
2/1 ρρρρρρ αα

−
−

−
− −−−−

 

Fixed and Random Effect Parameters 

Estimation and prediction 

After we obtain an estimate of θ , best linear unbiased estimator (BLUE) of β  and 
best linear unbiased predictor (BLUP) of γ  can be found by solving the mixed 
model equations, Henderson (1984). 









=














+ −

−

−−−

−−

yRZ

yRX

GXRZXRZ

ZRXXRX
1T

1T

11T1T

1T1T

ˆ

ˆ

ˆˆˆ

ˆˆ

γ
β

 (5) 

The solution of  (5) can be expressed as 

]XVZyV[ZG

)X(yVZG

yVX)XV(X

1T1T

1T

1T1T

ˆˆˆˆ

ˆˆˆˆ

ˆˆˆ

−−

−

−−−

−=

−=

=

 (6) 

The covariance matrix C of β̂ and γ̂ is given by 









=













+
=

=
−

−−−

−−

2221

21
T

11

11T1T

1T1T

CC

CC

GZRZXRZ

ZRXXRX

C

ˆˆ

ˆˆ

ˆˆˆ

ˆˆ

)ˆ,ˆ(Cov γβ

 (7) 

where 
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GZVXCGZRZC

CXVZGC

XVXC

TT

T

T

ˆˆˆ)ˆˆ(ˆ

ˆˆˆˆ

)ˆ(ˆ

1
21

111
22

11
1

21

1
11

−−−−

−

−−

−+=

−=

=

 

Custom Hypotheses 

In general, one can construct estimators or predictors for  

[ ] 







= LLLb 10   (8) 

for some hypothesis matrix L . Estimators or predictors of Lb  can easily be 

constructed by substituting β̂ and γ̂  into (8) and its variance covariance matrix can 

be approximated by TLCL . If 1L  is zero and L0  is estimable, bL ˆ  is called 

the best linear unbiased estimator of L0 . If 1L  is nonzero and L0  is 

estimable, bL ˆ  is called the best linear unbiased predictor of Lb . 

To test the hypothesis aLb =:H0  for a given vector a , we can use the statistic 

( ) ( )
q

aˆˆˆ T
−−=

− bL)LC(LabL
F

1T

 (9) 

where q is the rank of the matrix L . The statistic in (9) has an approximate F 
distribution. The numerator degrees of freedom is q  and the denominator degree 

of freedom can be obtained by Satterthwaite (1946) approximation. The method 
outlined below is similar to Giesbrecht and Burns (1985), McLean and Sanders 
(1988), and Fai and Cornelius (1996). 
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Satterthwaite’s Approximation 

To find the denominator degrees of freedom of (9), we first perform the spectral 

decomposition ΓΓ= DLCL TTˆ  where Γ is an orthogonal matrix of 

eigenvectors and D is a diagonal matrix of eigenvalues. If we let m� be the the 

m th  row of LΓ , md be the m th  eigenvalues and  

m
T

m gg 1

2
m

m
)ˆ(

d2
−∑

=
θ

 

where 
θ=θθ∂

∂=
ˆ

T
mm

m

C
g

��
 and 1)ˆ( −θΣ  is the covariance matrix of the estimated 

covariance parameters. If we let  

∑
=

>
−

=
q

1m
m

m

m 2)I(
2

E  

then the denominator degrees of freedom is given by 

qE

E2

−
= . 

Note that the degrees of freedom can only be computed when E>q. 

Type I &III Statistics 

Type I or III test statistics are special cases of custom hypothesis tests.  

Saved Values 

If predicted values are requested, they are computed by 
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ZXy ˆˆˆ +=   (10) 

using the estimates given in (6). 

If fixed predicted values are requested, they are computed by 

� �y XF � β   (11) 

If residuals are requested, they are computed by 

yyr −= ˆ   (12) 

Information Criteria 

Information criteria are for model comparison, and the following criteria are given 
in “smaller is better” form. If we let �  be the log-likelihood of (REML or ML), n 

be total number of cases (or total of case weights if used) and d  be number of 
model parameters, the formulae for various criteria are given below: 

• Akaike information criteria (AIC), Akaike (1974):  

� �2 2� d  

• Finite sample corrected (AICC), Hurvich and Tsai (1989):  

� � �
� �

2
2

1
�

d n

n d( )
 

• Bayesian information criteria (BIC), Schwarz (1978):  

� � �2� d nlog( )  

• Consistent AIC (CAIC), Bozdogan (1987): 

� � � �2 1� d n(log( ) ) 

For REML, the value of n  is chosen to be the total number of cases minus number 
fixed effect parameters and d  is the number of covariance parameters. For ML, the 
value of n  is the total number of cases and d  is the number of fixed effect 
parameters plus number of covariance parameters. 
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1st and 2nd Derivatives of )(k θ�  

In each Newton or scoring iteration we need to compute the 1st and 2nd derivatives 

of the components of the log-likelihood )(k θ� , k=1,2,3. Here we let 

)(θ
θ∂
∂= kkg � and )(

2

θ
θ∂θ∂

∂= kkH � , 3,2,1k = , then the 1st derivatives 

with respect to the s th  parameter in θ  are given by 

)
~~

(][

,][

),(][

11
3

11
2

1
1

XVVVXtrg

rVVrVg

VVtrg

s
T

s

ss

ss

−−

−−

−

−=

−=

=

�

�

�

 (13) 

and the 2nd derivatives with respect to the s th  and t th  parameters are given by 

),()(][ 111
1 sttsst VVtrVVVVtrH ���� −−− +−=  

rVVVr

rVVXXVVVr

rVVVVVrH

st
T

t
T

s
T

ts
T

st

11

111

111
2

~~
2

2][

−−

−−−

−−−

−

−

=

��

��

��

 (14) 

)
~~

(

)
~~~~

(

)
~~

(2][

11

1111

111
3

XVVVXtr

XVVVXXVVVXtr

XVVVVVXtrH

st
T

t
T

s
T

ts
T

st

−−

−−−−

−−−

−

−

=

�

��

��

 

where XCX =~
 for a matrix C  satisfying PXVXCCT == −− )’( 1  and 

XyyVX’X)VX(X’Ir 111 ˆ][ −=−= −−− .  
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Derivatives w.r.t. Parameters in G 

Derivatives with respect to parameters in G  can be constructed by from the entries 
of  
















=
















=

−−−

−−−

−−−

rVrZVrXVr

rVZZVZXVZ

rVXZVXXVX

rrWZrWXrW

rZWZZWXZW

rXWZXWXXW

ZrXW

TTT

TTT

TTT

111

111

111

111

111

111

1

),(),(),(

),(),(),(

),(),(),(

);;(

 (15) 

The matrix );;(1 ZrXW  can be computed from );;(1 ZyXW  given in (27), by 

using the following relationship, 

0Xbyr −=  

where 0b  is the current estimate of β . 

Using the above formula, we can obtain the following expressions, 

011

0
111

),(),( bXyWyyW

XbVyyVyrVr TTT

−=

−= −−−

 (16) 

011

0
111

),(),( bXXWyXW

XbVXyVXrVX TTT

−=

−= −−−

 (17) 
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011

0
111

),(),( bXZWyZW

XbVZyVZrVZ TTT

−=

−= −−−

 (18) 

In terms of the elements in );;(1 ZrXW  matrix, we can write down the 1st 

derivatives of  1� , 2�  and 3�  with respect to a parameter sθ  of the G matrix, 

),),(),((][

),,(),(][

),),((][

11,3

11,2

1,1

PXZWGZXWtrg

rZWGrZWg

GZZWtrg

ssG

s
T

sG

ssG

�

�

�

−=

−=

=

 (19) 

For the second derivatives, we first define the following simplification factors 

stts
st
G GZZWGZZWGZZWH ���� ),(),(),( 1111 +−=

),(),( 112 rZWGZXWH s
s
G

�=
),(),(),(),(),(2 111112 rZWGZrWrZWGZZWGZrWH stts

st
G

���� −=
),(),( 113 XZWGZXWH s

s
G

�=
),(),(),(),(),(2 111113 XZWGZXWXZWGZZWGZXWH stts

st
G

���� −=  

then second derivatives of 1� , 2�  and 3�  w.r.t. sθ  and tθ  (in G) are given by 

]Pt
G3

s
G3

st
G3stG,3

t
G2

Ts
G2

st
G2stG,2

st
G1stG,1

HPtr[HP]tr[H][H

HP)2(HH][H

)tr(H][H

−=

−=

=

 (20) 

Derivatives w.r.t. Parameters in R 

To compute  R derivatives, we need to introduce the matrices 



MIXED 

 

15

s

0(1)s
0

W
W

∂
∂−=  

and 

ts

0
2

(2)st
0

W
W

∂∂
∂−=  

where sθ  and tθ  are the sth and tth parameters of R . Therefore, 

BRA

BRRRRRRRRRRRRRABAW
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BRRRABAW

BRABAW
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s

T

sttsst
Tst

T

s
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T

)]([

][),(

)]([
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1

11111111)2(
0

1

11)1(
0

1
0
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−−=

θ−=

=

=

−
θθ∂

∂

−−−−−−−−

−
θ∂
∂

−−

−

������

�

 

The matrices A and B can be X , Z , Z
~

or r , where  

111 −−− +== )ZRZG(ZZMZ
~ T , and 

0
111 ]’)’([ XbyyVXXVXXIr −=−= −−−  

Remark: The matrix 111 )( −−− + ZRZG T involved in Z
~

can be obtained by 

pre/post multiply −−+ )( 1ZLRZLI TT  by L and TL  ). 

Using these notations, the 1st derivatives of )(θk� with respect to a parameter in 

R are as follows,  
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)tr(][
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~
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~
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To compute 2nd derivatives w.r.t. sθ  and tθ  (of R), we need to consider the 

following simplification factors. 
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Based on these simplification terms, the entries of the Hessian matrices are given 
by 

P)HPHPtr(H][H

HP)2(HH][H

Htr][H

t
R3

s
R3

st
R3stR,3

t
R2

Ts
R2

st
R2stR,2

st
R1stR,1

−=

−=

= )(

 (22) 

G&R cross derivatives 

These section gives expressions for the 2nd derivatives of  1� , 2�  and 3�  with 

respect to a parameter sθ  in G and a parameter tθ  in R. First, we introduce the 

following simplification terms, 
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),(

]),([]),([

)],(),(),([2

0

00

)1(
00

)1(
03

XZW

IMZZWGIZZMW

ZZMWZXWZXWH

t

ssst
GR

×

−−×

−=

�  

Based on these simplification terms, the second derivatives are given by 

)(][ 1,1
st
GRstGR HtrH =   

t
R

Ts
G

st
GRstGR HHHH 222,2 )(2][ −=  23) 

)(][ 333,3 PHPHPHtrH t
R

s
G

st
GRstGR −=   

Gradient & Hessian of REML 

The restricted log likelihood is given by 

2logp)(n|)(|log

)()()(|)(|log)|(2

1

1

−+θ+

θθθ+θ=θ−
−

−

XVX

rVrVy

T

T
REML�

 

where p is equal to the rank of X . 

Therefore the s th  element of the gradient vector is given by 

ssss gggg ][][][][ 321 ++=  

and the (s,t)-th element of the Hessian matrix is given by 

stststst HHHH ][][][][ 321 ++=  
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If scoring algorithm is used, the Hessian can be simplified to  

st][H][H[H] 3st1st +−= . 

Gradient & Hessian of MLE 

The log likelihood is given by 

2logn

)()()(|)(|log)|(2 1

+

θθθ+θ=θ− − rVrVy T
MLE�

 

Therefore the sth element of the gradient vector is given by 

sss ggg ][][][ 21 +=  

and the (s,t)th element of the Hessian matrix is given by 

ststst HHH ][][][ 21 += . 

If scoring algorithm is used the Hessian can be simplified to  

st1st ][H[H] −= . 

It should be noted that the Hessian matrices for the scoring algorithm in both ML 

and REML are not ‘exact’. In order to speed up calculation, some second derivative 

terms are dropped. Therefore, they are only used in intermediate step of 

optimization but not for standard error calculations. 
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Cross Product matrices 

During the estimation we need to construct several cross product matrices in each 

iteration, namely: Z)y;(X;W0 , Z)y;(X;W1 , Z)y;(X;WA
0 , 

Z)y;(X;WA
1 , y)(X;Wb0 , and y)(X;Wb1 . The SWEEP operator (see for 

example Goodnight (1979)) is used in constructing these matrices. Basically, the 
SWEEP operator performs the following transformation  









−−

⇒







−−

−−

BA’BCA’B

BAA
C’B

BA
. 

The steps needed to construct these matrices are outlined below, 

 

STEP 1:  

Construct 
















=

−−−

−−−

−−−

yRyZRZXRZ

ZRyyRyXRy

ZRXyRXXRX

Z)y;(X;W
1T1T1T

1T1T1T

1T1T1T

0  (24) 

 

STEP 2: 

Construct Z)y;(X;WA
0  which is an augmented version of Z)y;(X;W0 . It is 

given by the following expression. 









⋅

⋅+
=

−

00

0
T1TT

A
0 WZ)L,(W

)(Z,WLZLRZLI
Z)y;(X;W  (25) 

where L is the lower-triangular Cholesky root of G, i.e. G=LLT and W0(Z, . ) is the 

rows of W0 corresponding to Z. 
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STEP 3:  

Sweeping );;(0 ZyXWA  by pivoting on diagonal elements in the upper-left 

partition will give us the matrix );;(1 ZyXWA , which is shown below. 









⋅−

⋅
=

Z)y;(X;W(1,1)Z)LW,(W

)W(Z,(1,1)LW(1,1)W
Z)y;(X;W

1
A

10

TA
1

A
1A

1  (26) 

where  
















=

−−−

−−−

−−−

yVyZVyXVy

yVZZVZXVZ

yVXZVXXVX

ZyXW
TTT

TTT

TTT

111

111

111

1 );;(  (27) 

and  

−−+= ZL)RZL(I(1,1)W 1TTA
1 . 

During the sweeping, if we accumulate the log of the i th  diagonal element just 

before the i th  sweep, we will obtain  

||log||log||log RVZLRZLI 1TT −=+ −  as a by-product. Thus, adding to 

this quantity by ||log R  will give us )(1 θ� . 

 

STEP 4: 

Consider the following submatrix );(0 yXWb  of );;(1 ZyXW , 












= −−

−−

yVyXVy

yVXXVX
yXW TT

TT

b 11

11

0 );( . (28) 
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Sweeping );(0 yXWb  by pivoting on diagonal elements of XVXT 1− will give 

us 









=

−−

)(

)(

2 θ�T
0

0
1T

b1 b

bXVX
y)(X;W  (29) 

where b0 is an estimate of β0 in current iteration. After this step, we will obtain 

)(2 θ�  and ||)( 1
3 XVXT −=θ� .  
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