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CROSSTABS 

The notation and statistics refer to bivariate subtables defined by a row variable X 
and a column variable Y, unless specified otherwise. By default, CROSSTABS 
deletes cases with missing values on a table-by-table basis. 

Notation 
The following notation is used throughout this chapter unless otherwise stated: 

Xi  Distinct values of row variable arranged in ascending order: 
X X X R1 2< < <L  

Yj  Distinct values of column variable arranged in ascending order: 
Y Y YC1 2< < <L  

fij  Sum of cell weights for cases in cell i j,1 6  

 
c j  fij

i

R

=
∑

1

, the jth column subtotal 

 
ri  fij

j

C

=
∑

1

, the ith row subtotal 

 
W c rj

j

C

i

i

R

= =
∑ ∑=

1 1

, the grand total 

Marginal and Cell Statistics 

Count 

count = fij  
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Expected Count 

E
r c

Wij
i j=  

Row Percent 

row percent = ×100 f rij i3 8  

Column Percent 

column percent = ×100 f cij j3 8  

Total Percent 

total percent = ×100 f Wij3 8  

Residual 

R f Eij ij ij= −  

Standardized Residual 

SR
R

E
ij

ij

ij

=  
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Adjusted Residual 

AR
R

E
r

W

c

W

ij
ij

ij
i j

=

−�
��

�
�� −
�
��

�
��1 1

 

Chi-Square Statistics 

Pearson’s Chi-Square 

χ p
ij ij

ijij

f E

E
2

2

=
−

∑ 3 8
 

The degrees of freedom are R C− −1 11 61 6 . 

Likelihood Ratio 

χ LR ij ij ij

ij

f E f2 2= − ∑ ln3 8  

The degrees of freedom are R C− −1 11 61 6 . 

Fisher’s Exact Test 

If the table is a 2 2×  table, not resulting from a larger table with missing cells, 
with at least one expected cell count less than 5, then the Fisher exact test is 
calculated. See Appendix 5 for details. 
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Yates Continuity Corrected for 2 x 2 Tables 

χ c

W f f f f W

r r c c
f f f f

2

11 22 12 21
2

1 2 1 2
11 22 12 21

05

0

=

− −
−

%

&
KK

'
KK

.2 7
if > 0.5W

otherwise

 

The degrees of freedom are 1. 

Mantel-Haenszel Test of Linear Association 

χ MH W r2 21= −1 6  

where r is the Pearson correlation coefficient to be defined later. The degrees of 
freedom are 1. 

Other Measures of Association 

Phi Coefficient 

For a table not 2 2×  

ϕ
χ

= p

W

2

 

For a 2 2×  table only, ϕ  is equal to the Pearson correlation coefficient so that the 

sign of ϕ  matches that of the correlation coefficients. 
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Coefficient of Contingency 

CC
W

p

p

=
+

�
�
��

�
�
��

χ

χ

2

2

1 2

 

Cramér’s V 

V
W q

p=
−

�
�
��

�
�
��

χ 2 1 2

11 6  

where q R C= min ,; @ . 

Measures of Proportional Reduction in Predictive Error 

Lambda 

Let fim  and fmj  be the largest cell count in row i and column j, respectively. 

Also, let rm  be the largest row subtotal and cm  the largest column subtotal. Define 

λY X  as the proportion of relative error in predicting an individual’s Y category 

that can be eliminated by knowledge of the X category. λY X  is computed as 

λY X

im m

i

R

m

f c

W c
=

−

−
=
∑

1  
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The standard errors are 

ASE

f f c W

W c

ASE

f W

W c

ij ij j
j

C

im m
i

R

i

R

m

ij ij j j
j

C

Y X
i

R

m

0

2

1 1

2

1

1

2

11

=

− − −
�
��

�
��

−

=

− + −

−

= ==

==

∑ ∑∑

∑∑

δ δ

δ δ λδ λ

3 8

3 8
 

where 

δ

δ

ij
im

j
m

j f

j c

= %&'

=
%&'

1

0

1

0

if  is column index for 

otherwise

if  is index for 

otherwise

 

Lambda for predicting X from Y, λY X , is obtained by permuting the indices in the 
above formulae. 

The two asymmetric lambdas are averaged to obtain the symmetric lambda. 

λ =

+ − −

− −
= =
∑ ∑f f c r

W r c

im

i

R

mj m m

j

C

m m

1 1

2
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The standard errors are 

ASE

f f f c r W

W r c

ASE

f W

W r c

ij ij
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ij
c

i
r

j
c

j
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where 

δ

δ
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r mj

i
r m

i f

i r

=
%&'

=
%&'

1

0

1

0

if  is row index for 

otherwise

if  is index for 

otherwise

 

and where 

δ

δ

ij
c im

i
c m

j f

j c

= %&'

=
%&'

1

0

1

0

if  is column index for 

otherwise

if  is index for 

otherwise
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Goodman and Kruskal’s Tau (Goodman & Kruskal, 1954) 

Similarly defined is Goodman and Kruskal’s tau τ1 6 : 

τ Y X

ij i

i j

j

j

C

j

j

C

W f r c

W c

=

−

−

∑ ∑

∑
=

=

2 2

1

2 2

1

4 9
,

 

with standard error 

ASE f v
r

f c c W
r

f
r

fij
i

ij j j

j

C

i
ij

i
ij

j

C

i j

1 4
1

2
2

1

2

4 1 1 1= − −
�

�
��

�

�
�� − −

�

�
��

�

�
��

%
&K
'K

(
)K
*K= =

∑ ∑∑δ
δ δ1 6

,

 

in which 

δ = − = −
= =

∑ ∑ ∑W c v W f r cj

j

C

ij i

i j

j

j

C
2 2

1

2 2

1

and

,

 

τ X Y  and its standard error can be obtained by interchanging the roles of X and Y. 

The significance level is based on the chi-square distribution, since 

W C

W R

Y X R C

X Y R C

− −

− −

− −

− −

1 1

1 1

1 1
2

1 1
2

0 50 5

0 50 5

0 50 5

0 50 5

τ χ

τ χ

~

~
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Uncertainty Coefficient 

Let UY X  be the proportional reduction in the uncertainty (entropy) of Y that can 

be eliminated by knowledge of X. It is computed as 

U
U X U Y U XY

U YY X =
+ −1 6 1 6 1 6

1 6  

where 

U X
r

W

r

W

U Y
c

W

c

W

i i

i

R

j j

j

C

0 5

0 5

= − �
�

�
�

= −
�
��

�
��

=

=

∑

∑

ln

ln

1

1

 

and 

U XY
f

W

f

W
f

ij ij

i j

ij1 6 = −
�
��

�
�� >∑ ln ,

,

for 0  

The asymptotic standard errors are 

ASE
WU Y

f U Y
f

r
U X U XY

c

W

ASE
P W U X U Y U XY

WU Y

ij
ij

i

j

i j
1 2

2

0

2

1=
�
��

�
�� + −

�
��

�
��

%&K'K
()K*K

=
− + −

∑0 5 0 5 0 5 0 5

0 5 0 5 0 5
0 5

ln ln
,
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where 

P f
c r

Wfij
j i

iji j

=
�
��

�
��∑ ln

,

2

 

The formulas for U X Y  can be obtained by interchanging the roles of X and Y. 

A symmetric version of the two asymmetric uncertainty coefficients is defined 
as follows: 

U
U X U Y U XY

U X U Y
=

+ −
+

�
!  

"
$##

2
1 6 1 6 1 6

1 6 1 6  

with asymptotic standard errors 

ASE
W U X U Y

f U XY
r c

W
U X U Y

f

Wij
i j ij

i j

1 2 2

2
2=
+

�
��

�
�� − +

�
��

�
��

%&K'K
()K*K∑1 6 1 6

1 6 1 6 1 6ln ln
,

 

or 

ASE
W U X U Y

P U X U Y U XY W0
22=

+
− + −1 6 1 6 1 6 1 6 1 6  

Cohen’s Kappa 
Cohen’s kappa κ1 6 , defined only for square table R C=1 6 , is computed as 

κ =

−

−

= =

=

∑ ∑

∑

W f r c

W r c

ii

i

R

i i

i

R

i i

i

R
1 1

2

1

 



CROSSTABS   11 

 

with variance 

var

var

,

1
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2
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W
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W r c

W f W f r c r c

W r c
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Kendall’s Tau-b and Tau-c 
Define 

D W r

D W c

C f f

D f f

P f C

Q f D

r i

i

R

c j
j

C

ij hk

k jh i

hk

k jh i

ij hk
k jh i

hk
k jh i

ij ij
i j

ij ij

i j

= −

= −

= +

= +

=

=

=

=

<< >>

>< <>

∑

∑

∑∑ ∑∑

∑∑ ∑∑

∑

∑

2 2

1

2 2

1

,

,
 

Note: the P and Q listed above are double the “usual” P (number of concordant 
pairs) and Q (number of discordant pairs).  Likewise, Dr  is double the “usual” 
P Q X+ + 0  (the number of concordant pairs, discordant pairs, and pairs on which 
the row variable is tied) and Dc  is double the “usual” P Q Y+ + 0  (the number of 
concordant pairs, discordant pairs, and pairs on which the column variable is tied). 

Kendall’s Tau-b 

τ b
r c

P Q

D D
= −

 

with standard error 
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ASE
D D

f D D C D v W D D
r c

ij r c ij ij b ij

i j

b r c1
2 3 2 21

2= − + − +∑1 6 3 84 9 1 6τ τ
,
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where 

v r D c Dij i c j r= +  

Under the independence assumption, the standard error is 

ASE

f C D
W

P Q

D D

ij ij ij

i j

r c
0

2 2

2

1

=

− − −∑ 3 8 1 6
,

 

Kendall’s Tau-c 

τ c
q P Q

W q
=

−

−
1 6
1 62 1

 

with standard error 

ASE
q

q W
f C D

W
P Qij ij ij

i j

1 2

2 22

1

1=
−

− − −∑1 6 3 8 1 6
,

 

or, under the independence assumption, 

ASE
q

q W
f C D

W
P Qij ij ij

i j

0 2

2 22

1

1=
−

− − −∑1 6 3 8 1 6
,

 

where 

q R C= min ,; @  
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Gamma 

Gamma γ1 6  is estimated by 

γ = −
+

P Q

P Q
 

with standard error 

ASE
P Q

f QC PDij ij ij

i j

1 2

24=
+

−∑1 6 3 8
,

 

or, under the hypothesis of independence, 

ASE
P Q

f C D
W

P Qij ij ij

i j

0
2 22 1=

+
− − −∑1 6 3 8 1 6

,

 

Somers’ d 
Somers’ d with row variable X as the independent variable is calculated as 

d
P Q

DY X
r

= −
 

with standard error 

ASE
D

f D C D P Q W R
r

ij r ij ij i

i j

1 2

22= − − − −∑ 3 8 1 61 6J L
,

 

or, under the hypothesis of independence, 
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ASE
D

f C D
W

P Q
r

ij ij ij

i j

0
2 22 1= − − −∑ 3 8 1 6

,

 

By interchanging the roles of X and Y, the formulas for Somers’ d with X as the 
dependent variable can be obtained. 

Symmetric version of Somers’ d is 

d
P Q

D Dc r

=
−

+

1 6
1 61

2

 

The standard error is 

ASE
D D

D Db

r c
r c1

22
=

+

σ τ

1 6  

where σ τ b

2  is the variance of Kendall’s τ b , 

ASE
D D

f C D
W

P Q
c r

ij ij ij

i j

0
2 24 1=

+
− − −∑1 6 3 8 1 6

,

 

Pearson’s r 
The Pearson’s product moment correlation r is computed as 

r
X Y

S X S Y

S

T
= ≡

cov ,1 6
1 6 1 6
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where 

cov ,
,

X Y X Y f X r Y c W

S X X r X r W

i j ij
i j

i i
i

R

j j
j

C

i i

i

R

i i

i

R

1 6

0 5

= −
�
��

�
��
�
�
��

�
�
��

= −
�
��

�
��

∑ ∑ ∑

∑ ∑

= =

= =

1 1

2

1 1

2

 

and 

S Y Y c Y c Wj j

j

C

j j

j

C

1 6 = −
�

�
��

�

�
��

= =
∑ ∑2

1 1

2

 

The variance of r is 

var

,

1 4

2 2
2

1

2
= − − − − + −�

! 
"
$#

%&'
()*∑

T
f T X X Y Y

S

T
X X S Y Y Y S Xij i j i j

i j

3 83 8 3 8 1 6 3 8 1 6  

If the null hypothesis is true, 

var
, ,

0

2 2

2

2 2

=

−
�

�
��

�

�
��

�
�
��

�
�
��
�

�
��

�

�
��

∑ ∑

∑ ∑

f X Y f X Y W

r X c Y

ij i j

i j

ij i j

i j

i i

i

j j

j

 

where 

X X r Wi i

i

R

=
=
∑

1
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and 

Y Y c Wj j

j

C

=
=

∑
1

 

Under the hypothesis that ρ = 0 , 

t
r W

r
= −

−

2

1 2
 

is distributed as a t with W − 2  degrees of freedom. 

Spearman Correlation 
The Spearman’s rank correlation coefficient rs  is computed by using rank scores 

Ri  for Xi  and Ci  for Yj . These rank scores are defined as follows: 

R r r i R

C c c j C

i k i
k i

j h j
h j

= + + =

= + + =

<

<

∑

∑

1 2 1 2

1 2 1 2

1 6

3 8

for 

for 

, , ,

, , ,

K

K

 

The formulas for rs  and its asymptotic variance can be obtained from the Pearson 

formulas by substituting Ri  and C j  for Xi  and Yj , respectively. 

Eta 
Asymmetric η  with the column variable Y as dependent is 

ηY
YWS

S Y
= −1 1 6  
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where 

S Y f
r

Y fYW j ij

i j ii

R

j ij

j

C

= −
�

�
��

�

�
��∑ ∑ ∑

= =

2

1 1

2

1

,

 

Relative Risk 
Consider a 2 2×  table that is,  R C= =( )2 . In a case-control study, the relative 
risk is estimated as 

R
f f

f f0
11 22

12 21
=  

The 100 1− α1 6  percent CI for the relative risk is obtained as 

R z v R z v0 1 2 0 1 2exp , exp− − −α α4 9 4 9  

where 

v
f f f f

= + + +
�
��

�
��

1 1 1 1

11 12 21 22

1 2

 

The relative risk ratios in a cohort study are computed for both columns. For 
column 1, the risk is 

R
f f f

f f f1
11 21 22

21 11 12
=

+
+

1 6
1 6  

and the corresponding 100 1− α1 6  percent CI is 

R z v R z v1 1 2 1 1 2exp , exp− − −α α4 9 4 9  
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where 

v
f

f f f

f

f f f
=

+
+

+
�
��

�
��

12

11 11 12

22

21 21 22

1 2

1 6 1 6  

The relative risk for column 2 and the confidence interval are computed similarly. 

McNemar’s Test 
Suppose the test sample is ( , ),( , ), ,( , )x y x y x yn n1 1 2 2 K .  

The null hypothesis H0  is P X Y P X Y( ) ( )< = > .  

Let  

n i x y i ni i1 1= < =#{ : , , }K  

n i x y i ni i2 1= > =#{ : , , }K  

and 

r n n= min( , )1 2  

Notation 
n1  Number of cases where x y i ni i< =, ,1K  

n2  Number of cases where x y i ni i> =, ,1K  

r min( , )n n1 2  

Probability 
If there is no real difference between the two trials, we expect the frequencies n1  
and n2  to be related as 1:1. Deviations from this ratio can be tested by using the 
binomial distribution. The two-tailed probability level is  

2 1 21 2

0

1 2×
+�

��
�
��

=

+∑ n n

i
i

r
n n( / )  

Note. This is a generalized version of McNemar’s  test. The original version is for a 
2*2 table. 
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Conditional Independence and Homogeneity 
The Cochran’s and Mantel-Haenzel statistics test the independence of two 
dichotomous variables, controlling for one or more other categorical variables.  
These “other” categorical variables define a number of strata, across which these 
statistics are computed. 

The Breslow-Day statistic is used to test homogeneity of the common odds ratio, 
which is a weaker condition than the conditional independence (i.e., homogeneity 
with the common odds ratio of 1) tested by Cochran’s and Mantel-Haenszel 
statistics.  Tarone’s statistic is the Breslow-Day statistic adjusted for the consistent 
but inefficient estimator such as the Mantel-Haenszel estimator of the common 
odds ratio. 

Notation and Definitions 

The addition of strata requires the following modifications to the notation: 

K  The number of strata. 

fijk  Sum of cell weights for cases in the ith row of the jth column of the kth 
strata. 

 
c jk  fijk

i

R

=

Ê
1

, the jth column of the kth strata subtotal. 

 
rik  fijk

j

C

=

Ê
1

, the ith row of the kth strata subtotal. 

 
nk  c rjk

j

C

ik

i

R

= =

Ê Ê=
1 1

, the grand total of the kth strata. 

 
Eijk  E f

r c

nijk
ik jk

k
3 8 = , the expected cell count of the ith row of the jth 

column of the kth strata. 

A stratum such that nk = 0 is omitted from the analysis.  (K must be modified 
accordingly.)  If nk = 0 for all k, then no computation is done. 

 

Preliminarily, define for each k 
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$p
f

rik
i k

ik
= 1 , 

d p pk k k= -$ $1 2 , 

$p
c

nk
k

k
= 1 , 

and 

w
r r

nk
k k

k
= 1 2 . 

Cochran’s Statistic 

Cochran’s (1954) statistic is 

C

w d w

w p p w

w d

w p p

k k

k

K

k

k

K

k k k

k

K

k

k

K

k k

k

K

k k k

k

K
=

-

=

-

= =

= =

=

=

Ê Ê

Ê Ê

Ê

Ê
1 1

1 1

1

1

1 1$ ( $ ) $ ( $ )

. 

All stratum such that r k1 0=  or r k2 0=  are excluded, because dk  is undefined.  If 
every stratum is such, C is undefined.  Note that a stratum such that r k1 0>  and 
r k2 0>  but that c k1 0=  or c k2 0=  is a valid stratum, although it contributes 
nothing to the denominator or numerator.  However, if every stratum is such, C is 
again undefined.  So, in order to compute a non system missing value of C, at least 
one stratum must have all non-zero marginal totals. 

Alternatively, Cochran’s statistic can be written as 



CROSSTABS   23 

 

C

f E

w p p

k k

k

K

k k k

k

K
=

-

-

=

=

Ê

Ê

( )

$ ( $ )

11 11

1

1

1

. 

When the number of strata is fixed as the sample sizes within each stratum 
increase, Cochran’s statistic is asymptotically standard normal, and thus its square 
is asymptotically distributed as a chi-squared distribution with 1 d.f. 

Mantel and Haeszel’s Statistic 

Mantel and Haenszel’s (1959) statistic is simply Cochran’s statistic with small-
sample corrections for continuity and variance “inflation”.  These corrections are 
desirable when r k1  and r k2  are small, but the corrections can make a noticeable 
difference even for relatively large r k1  and r k2  (Snedecor and Cochran, 1980, p. 
213).  The statistic is defined as: 

M

f E f E

r r

n
p p

k k

k

K

k k

k

K

k k

k
k k

k

K
=

- - -

-
-

= =

=

Ê Ê

Ê

{| ( )| . } ( )}

$ ( $ )

11 11

1

11 11

1

1 2

1

05

1
1

 sgn{

, 

where sgn is the signum function 

sgn

if 

if 

-1 if x  0

( )x

x

x=
>
=
<

%
&K
'K

1 0

0 0 . 

Any stratum in which nk = 1 is excluded from the computation.  If every stratum is 
such, then M is undefined.  M is also undefined if every stratum is such that 
r k1 0= , r k2 0= , c k1 0= , or c k2 0= .  In order to compute a non system missing 
value of M, at least one stratum must have all non-zero marginal totals, just as for 
C. 

When the number of strata is fixed as the sample sizes within each stratum 
increase, or when the sample sizes within each strata are fixed as the number of 
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strata increases, this statistic is asymptotically standard normal, and thus its square 
is asymptotically distributed as a chi-squared distribution with 1 d.f. 

The Breslow-Day Statistic 

The Breslow-Day statistic for any estimator $θ  is 

{ ( | ; $ )}

( | ; $)

f f c

f c
k k k

k kk

K
11 11 1

2

11 11

-

=

Ê E

V

θ
θ

. 

E and V are based on the exact moments, but it is customary to replace them with 

the asymptotic expectation and variance.  Let Ê  and V̂  mean the estimated 
asymptotic expectation and the estimated asymptotic variance, respectively.  Given 

the Mantel-Haenszel common odds ratio estimator MHθ̂ , we use the following 

statistic as the Breslow-Day statistic:  

B
f f c

f c
k k k

k kk

K

=
-
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Ê { $ ( | ; $ )}
$ ( | ; $ )

11 11 1
2

11 11

E

V
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θ
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, 

where 

$ ( | ; $ ) $E MHf c fk k k11 1 11θ =  

 satisfies the equations 

$ ( $ )

( $ )( $ )
$f n r c f

r f c f
k k k k k

k k k k

11 1 1 11

1 11 1 11

- - +
- -

= θ MH , 

with constraints such that 
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and 

$ ( | ; $ )
$ $ $ $

V MHf c
f f f f

k k
k k k k

11 1
11 12 21 22

1
1 1 1 1θ = + + +

�
��

�
��
-

 

with constraints such that  
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All stratum such that r k1 0=  or c k1 0=  are excluded.  If every stratum is such, B  

is undefined.  Stratum such that $f k11 0=  are also excluded.  If every stratum is 
such, then B  is undefined. 

Breslow-Day’s statistic is asymptotically distributed as a chi-squared random 
variable with K-1 degrees of freedom under the null hypothesis of a constant odds 
ratio. 

Tarone’s Statistic 

Tarone (1985) proposes an adjustment to the Breslow-Day statistic when the 
common odds ratio estimator is consistent but inefficient, specifically when  we 
have the Mantel-Haenszel common odds ratio estimator.  The adjusted statistic, 

Tarone’s statistic, for MHθ̂  is 
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where Ê  and V̂  are as before. 
The required data conditions are the same as for the Breslow-Day statistic 

computation.  T  is, of course, undefined, when B  is undefined. 
T  is also asymptotically distributed as a chi-squared random variable with K-1 

degrees of freedom under the null hypothesis of a constant odds ratio. 

Estimation of the Common Odds Ratio 

For K  strata of 22 ×  tables, write the true odds ratios as 

θ k
k k

k k

p p

p p
=

-
-

1 2

1 2

1

1

( )

( )
 

 for Kk  ..., ,1= .   And, assuming that the true common odds ratio exists, 

Kθθθ ===  ... 1 , Mantel and Haenszel’s (1959) estimator of this common odds 

ratio is 

$θ MH = =
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f f
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f f
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k k

kk

K

k k

kk

K

11 22

1

12 21

1

. 

If every stratum is such that f k12 0=  or f k21 0= , then $θ MH  is undefined. 
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The (natural) log of the estimated common odds ratio is asymptotically normal.  
Note, however, that if f k11 0=  or f k22 0=  in every stratum, then $θ MH  is zero and 

log $θ MH4 9  is undefined. 

The Asymptotic Confidence Interval 

Robins et al. (1986) give an estimated asymptotic variance for log $θ MH4 9  that is 

appropriate in both asymptotic cases: 
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An asymptotic (100 - α )% confidence interval for log θ1 6  is 

log( z( logMH MH
$ ) / ) $ [ ( $ )]θ α σ θ� 2 , 

where z( / )α 2  is the upper α / 2 critical value for the standard normal distribution. 

All these computations are valid only if $θ MH  is defined and greater than 0. 
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The Asymptotic P-value 

We compute an asymptotic P-value under the null hypothesis that 
θ θ θ    o( ) ( )= " = >k k 0  against a 2-sided alternative hypothesis ( )θ θ� o , using 
the standard normal variate, as follows 

Pr | |
$ ) )
$ [ $ )]

Pr
$ ) )
$ [ $ )]

,Z Z>
-�

��
�
��
= >

-�
��

�
��

 
log(  log(

log(

log(  log(

log(
MH o

MH

MH o

MH

θ θ
σ θ

θ θ
σ θ

2   

given that log $θ MH4 9  is defined. 

Alternatively, we can consider using $θ MH  and the estimated exact variance of 
$θ MH , which is still consistent in both limiting cases: 

$ [ ( $ )]$σ θ θ2 log MH MH
2 . 

Then, the asymptotic P-value may be approximated by 

Pr
log(

MH o

MH o

| |
$

$ [ $ )]
Z >

-�
��

�
��

θ θ
σ θ θ

. 

The caveat for this formula is that $θ MH  may be quite skewed even in moderate 
sample sizes (Robins et al., 1986, p. 314).  
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