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CATPCA 

The CATPCA procedure quantifies categorical variables using optimal scaling, 
resulting in optimal principal components for the transformed variables. The 
variables can be given mixed optimal scaling levels and no distributional 
assumptions about the variables are made. 

In CATPCA, dimensions correspond to components (that is, an analysis with two 
dimensions results in two components), and object scores correspond to component 
scores. 

Notation 
The following notation is used throughout this chapter unless otherwise stated: 

 
n  Number of analysis cases (objects) 

 

wn  Weighted number of analysis cases: 

1

n

i

i

w

=
∑  

totn  Total number of cases (analysis + supplementary) 

iw  Weight of object i ; 1iw =  if cases are unweighted; 0iw =  if object i is 

supplementary. 

W  Diagonal tot totn n×  matrix, with iw on the diagonal. 

m  Number of analysis variables 

 

wm  Weighted umber of analysis variables (

1

m

w j

j

m v

=

= ∑ ) 

totm  Total number of variables (analysis + supplementary) 

1m  Number of analysis variables with multiple nominal scaling level. 

2m  Number of analysis variables with non-multiple scaling level. 

1wm  Weighted number of analysis variables with multiple nominal scaling level. 

2wm  Weighted number of analysis variables with non-multiple scaling level. 
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J  Index set recording which variables have multiple nominal scaling level. 

H  The data matrix (category indicators), of order tot totn m× , after 

discretization,  imputation of missings , and listwise deletion, if applicable. 

p  Number of dimensions 

 

For variable j , 1, , totj mK=  

jv  variable weight; 1jv =  if weight for variable j  is not 

specified or if variable j  is supplementary 

jk  Number of categories of variable j (number of distinct values 

in jh , thus,  including supplementary objects) 

jG  Indicator matrix for variable j , of order tot jn k×  

The elements of jG  are defined as 1, , ; 1, ,tot ji n r k= =K K  

( )
1 when the th object is in the th category of variable 

0 when the th object is not in the th category of variable j ir
i r j

g
i r j


= 


 

 

jD  Diagonal j jk k×  matrix, containing the weighted univariate marginals; 

i.e., the weighted  column sums of jG   ( jD j j′= G WG ) 

jM  Diagonal tot totn n×  matrix, with diagonal elements defined as 

 

( )

0 when the th observation is missing and missing strategy variable  is passive

when the th object is in th category of variable  and th category is only
0

used by supplementary objects (i.e. wh
j ii

i j

i r j rm =

( )

   

en 0)

otherwise

j rr

jv






 =



D
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*M  
jj

M∑  

jS  I-spline basis for variable j , of order ( )j j jk s t× +  (see Ramsay (1988) 

for details) 

jb  Spline coefficient vector, of order j js t+  

jd  Spline intercept. 

js  Degree of polynomial 

jt  Number of interior knots 

The quantification matrices and parameter vectors are: 

X  

 

Object scores, of order totn p×  

wX  

 

Weighted object scores ( w =X WX ) 

nX  

 

X normalized according to requested normalization option 

jY  Centroid coordinates,  of order jk p× . For variables with optimal scaling 

level multiple nominal, this are the category quantifications  

jy  Category quantifications for variables with non-multiple scaling level, of 
order jk  

ja  Component loadings for variables with non-multiple scaling level, of order 
p  

n j
a  

 

ja normalized according to requested normalization option 

Y  Collection of  category quantifications (centroid coordinates) for variables 
with multiple nominal scaling level ( jY ), and vector coordinates for  non-

multiple scaling level ( j j′y a ). 

Note: The matrices W , jG , jM , *M , and jD  are exclusively notational devices; 

they are stored in reduced form, and the program fully profits from their sparseness 
by replacing matrix multiplications with selective accumulation. 
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Discretization 
Discretization is done on the unweighted data. 

Multiplying  First, the orginal variable is standardized. Then the standardized values are 
 multiplied by 10 and rounded, and  a value is added such that the lowest value 
 is 1. 

Ranking The original variable is ranked in ascending order, according to the 

 alpanumerical value . 

Grouping into a specified number of categories with a normal distribution 

First, the original variable is standardized. Then cases are assigned to categories 
using intervals as defined  in Max (1960).  

Grouping into a specified number of categories with a unifrom distribution 
First the target frequency is computed as n  divided by the number of specified 
categories, rounded.  Then the original categories are assigned to grouped 
categories such that the frequencies of the grouped categories are as close to the 
target frequency as possible. 

Grouping equal intervals of specified size 

First the intervals are defined as lowest value + interval size, lowest value + 

2*interval size, etc. Then cases with values in the thk interval are assigned to 
category k .   

Imputation of Missing Values 
When there are variables with  missing values specified to be treated as active 
(impute mode or extra category), then first the jk ’s for these variables are 

computed before listwise deletion. Next the category indicator with the highest 
weighted frequency  (mode; the smallest if multiple modes exist), or 1jk +  (extra 

category) is imputed. Then listwise deletion is applied if applicable. And then the 

jk ’s are adjusted. 
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If  an extra category is imputed for a variable with optimal scaling level Spline 
Nominal, Spline Ordinal, Ordinal or Numerical, the extra category is not included 
in the restriction according to the scaling  level in the final phase (see step (2) next 
section). 

Configuration 
CATPCA can read a configuration from a file, to be used as the initial 
configuration or as a fixed configuration in which to fit variables.  

For an initial configuration see step 1 in the Optimization section.  

A fixed configuration X  is centered and orthonormalized as described in the 
optimization section in step 3 (with X  in stead of Z ) and step 4 (except for the 

factor 1 2
wn ), and the result is postmultiplied with 1 2 (this leaves the 

configuration unchanged if it is already centered and orthogonal). The analysis 
variables are set to supplementary and variable weights are set to one.  Then  
CATPCA proceeds as described in the Supplementary Variables section.  

Objective Function Optimization 

Objective Function 

The CATPCA objective is to find object scores X  and a set of jY  (for 

1, ,j mK= )  the underlining indicates that they may be restricted in various 

ways  so that the function 

( ) ( ) ( )1 1; trw j j jj j
j

n cσ − − ′ 
= − − 

 ∑X Y X G Y M W X G Y ,  with 

c  is p  if j J∈  and c  is 1  if j J∉ , 

is minimal, under the normalization restriction w wn m∗′ =X M WX I  ( I is the p p×  

identity matrix). The inclusion of jM  in ( );X Yσ  ensures that there is no 

influence of passive missing values (missing values in variables that have missing 
option passive, or missing option not specified ). M∗  contains the number of active 

data values for each object. The object scores are also centered; i.e. they satisfy 

∗′ =u M WX 0  with u  denoting an  n -vector with ones. 
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Optimal Scaling Levels 
The following optimal scaling levels are distinguished in CATPCA: 

Multiple Nominal  jjY Y=  (equality restriction only). 

Nominal  j jjY y a′=  (equality and rank - one restrictions). 

Spline Nominal  j jjY y a′=  and  j j j jdy S b= +   (equality, rank – one, and  spline

 restrictions). 

Spline Ordinal  j jjY y a′=  and  j j j jdy S b= +   (equality, rank – one, and  monotonic spline       

 restrictions), 

with jb restricted to contain nonnegative elements (to garantee monotonic I-

splines). 

Ordinal  j jjY y a′= and j jy C∈  (equality, rank – one, and monotonicity restrictions). 

The monotonicity restriction j jy C∈  means that jy  must be located in the 

convex cone of all jk -vectors  with nondecreasing elements. 

Numerical   j jjY y a′= and j jy L∈ (equality, rank – one, and linearity restrictions). 

The linearity restriction j jLy ∈  means that jy  must be located in the subspace 

of all jk -vectors that are a linear transformation of the vector consisting of jk  

successive integers.  
 

For each variable, these levels can be chosen independently. The general 
requirement for all options is that equal category indicators receive equal 
quantifications. The general requirement for the non-multiple options is 

j jjY y a′= ; that is, jY  is of rank one; for identification purposes, jy  is always 

normalized so that j j j wn′ =y D y .  
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Optimization 
Optimization is achieved by executing the following iteration scheme: 

1. Initialization I or II 

2. Update category quantifications 

3. Update object scores 

4. Orthonormalization 

5. Convergence test: repeat (2)(4) or continue 

6. Rotation and reflection 

The first time (for the initial configuration) initialization I is used and variables that 
do not have optimal scaling level Multiple Nominal or Numerical are temporarily 
treated as numerical, the second time (for the final configuration) initialization II is 
used . Steps (1) through (5) are explained below. 

(1) Initialization 

I.  If a fixed configuration is not specified, the object scores X  are initialized with 
random numbers. Then X  is normalized so that ∗′ =u M WX 0  and 

w wn m∗′ =X M WX I , yielding �X . The initial component loadings are computed as 

the cross products of �X  and the centered original variables 

( )( )j j j′ ′−I M uu W u M Wu h ,  rescaled to unit length.  

II.  

All relevant  quantities are copied from the results of the first cycle. 

 (2) Update category quantifications; loop across variables 1, …,j = m               

( variables 1, …,m  are analysis variables): 

With fixed current values w
+X  the unconstrained update of  jY is  

                                � jY  
1

j j w
− +′= D G X  

Multiple nominal:  jY+  � j= Y  . 
For non-multiple scaling levels first an unconstrained update is computed in the 
same way: 

� jY 1
j j w
− +′= D G X  
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next one cycle of an ALS algorithm (De Leeuw et al., 1976) is executed for 

computing a rank-one decomposition of � jY , with restrictions on the left-hand 

vector, resulting in 

jy% j j= Y a%  

Nominal:  *
jy  j= y% . 

For the next four optimal scaling levels, if variable j was imputed with an extra 

category, *
jy  is inclusive category jk in the initial phase, and is exclusive category 

jk in the final phase. 

Spline nominal and spline ordinal: *
jy    j j jd S b= + . 

The spline transformation is computed as a weighted regression  (with weights the 

diagonal elements of jD ) of % jy on the I-spline basis jS . For the spline ordinal 

scaling level the elements of jb  are restricted to be nonnegative, which makes *
jy  

monotonically increasing 
 

Ordinal:  *
jy  ← WMON( % jy ) . 

The notation WMON( ) is used to denote the weighted monotonic regression 

process, which makes *
jy  monotonically increasing. The weights used are the 

diagonal elements of jD  and the subalgorithm used is the up-and-down-blocks 

minimum violators algorithm (Kruskal, 1964; Barlow et al., 1972).  

Numerical: *
jy   ← WLIN( % jy ). 

The notation WLIN( ) is used to denote the weighted linear regression process. 
The weights used are the diagonal elements of jD . 

Next *
jy  is normalized  (if variable j was imputed with an extra category, *

jy is 

inclusive category jk  from here on): 

jy+ 1/ 2 * * * 1/ 2( )w j j j jn −′= y y D y  

Then we update the component loadings: 
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 ja+ �1
jw j jn− +′= Y D y  

Finally, we set jY+  j j
+ +′= y a . 

(3) Update object scores 

Firs the auxiliary score matrix Z  is computed as 

j j jj

+← ∑Z M G Y  

and centered with respect to W and M∗ : 

( )( )∗
∗ ∗′ ′= −X I M uu W u M Wu Z  

These two steps yield locally the best updates when there would be no 
orthogonality constraints. 

(4) Orthonormalization 

To find an ∗M -orthonormal X+  that is closest to X∗  in the least squares sense, 

we use the singular value decomposition 1 21 2 1 2 * 1 2
*wm − ′=M W X K / , then 

1 21 2 1 2 1 2
*w wn m − ′M W KL yields ∗M -orthonormal weighted object scores: 

1 2 1 * 1/ 2
w w wn m+ − −

∗ ′←X M WX L / , and 1
w

+ − +=X W X . 

The calculation of L  and  is based on tridiagonalization with Householder 
transformations followed by the implicit QL algorithm (Wilkinson, 1965). 

(5) Convergence test 

The difference between consecutive values of the quantity  

TFIT = ( )1
 ( ) trw j j j j j j j

j J j J

pn v v−

∈ ∉

′ ′+∑ ∑Y D Y a a , 
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is compared with the user-specified convergence criterion ε  - a small positive 
number. It can be shown that TFIT = ( )1 2 ;w wm pm σ+ − X Y . Steps (2) through 

(4) are repeated as long as the loss difference exceeds ε. 

After convergence TFIT is also equal to 1 2tr( ) , with as computed in step (4) 

during the last iteration. (See also Model Summary, and Correlations Transformed 

Variables for interpretation of 1 2 ).  

(6) Rotation and reflection 

To achieve principal axes orientation, +X  is rotated with the matrix ′L . In 

addition the ths column of +X  is reflected if for dimension s  the mean of squared 
loadings  with a negative sign is higher than the mean of squared loadings with a 
positive sign. Then step (2) is executed, yielding the rotated and possibly reflected 
quantifications and loadings. 

Supplementary Objects 
To compute the object scores for supplementary objects, after convergence steps 
(2) and (3) are repeated, with the zero’s in W temporarily set to ones in computing 

Z  and +X . If a supplementary object has missing values, passive treatment is 
applied. 

Supplementary Variables 
The quantifications for supplementary variables are computed after convergence. 
For  supplementary variables with multiple nominal scaling level step (2) is 
executed once. For non-multiple supplementary variables, an initial ja  is 

computed as in step (1). Then the rank-one and restriction substeps of step (2) are 
repeated as long as the difference between consecutive values of j j′a a exceeds 

.00001, with a maximum of 100 iterations. 

Diagnostics 

Maximum Rank (may be issued as a warning when exceeded) 

The maximum rank maxp indicates the maximum number of dimensions that can 

be computed for any data set. In general 
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max 1 2min 1, j
j J

p n k m m∑
∈

  
= − − +     

  

if there are variables with optimal scaling level multiple nominal without missing 
values to be treated as passive.  If variables with optimal scaling level multiple 
nominal do have missing values to be treated as passive, the maximum rank is 

max 2min 1, j
j J

p n k m∑
∈

  
= − +     

  

Here jk  is exclusive supplementary objects (that is, a category only used by 

supplementary objects is not counted in computing the maximum rank). Although 
the number of nontrivial dimensions may be less than maxp when 2m = ,  

CATPCA does allow dimensionalities all the way up to maxp . When, due to empty 

categories in the actual data, the rank detoriates below the specified dimensionality, 
the program stops. 

Descriptives 
The descriptives tables gives the weighted univariate marginals and the weighted 
number of missing values (system missing, user defined missing, and values 0≤ ) 
for each variable.  

Fit and Loss Measures 
When the HISTORY option is in effect, the following fit and loss measures are 
reported: 

(a) Total fit. This is the quantity TFIT as defined in step (5). 

(b) Total loss. This is ( );σ X Y , computed as the sum of multiple loss and single 

loss defined below. 

(c) Multiple loss. This measure is computed as 

1 1
1 2TMLOSS ( ) ( )  tr( )  tr( )w w w j j j j w j j j j

j J j J

m pm n p v n v− −

∈ ∉

 
 ′ ′= + − +   

∑ ∑Y D Y Y D Y
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(d) Single loss. This measure is computed only when some of the variables are 
single: 

1SLOSS  tr( )w j j j j j j j

j J j J

n v v−

∉ ∉

′ ′= −∑ ∑Y D Y a a  

Model Summary 

Cronbach’s Alpha 

Cronbach’s Alpha per dimension  ( 1, ,s p= … ): 

1 2 1 2( 1) /( ( 1))s w s s wm mα λ λ= − − ,   

Total  Cronbach’s Alpha is 

( )1 2 1 21 ( 1)w s s ws s
m mα λ λ= − −∑ ∑  

with sλ the ths diagonal element of as computed in step (4) during the last 

iteration. 

Variance Accounted For  

Variance Accounted For per dimension  ( 1, ,s p= … ):  

Multiple Nominal variables  

1VAF1  tr( )s w j js j js

j J

n v−

∈

′= ∑ Y D Y , (% of variance is 1VAF1 100 /s wm× ), 

Non-Multiple variables 
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2VAF2s j js

j J

v a

∉

= ∑ , (% of variance is 2VAF2 100 /s wm× ). 

Eigenvalue 

Eigenvalue per dimension: 

1 2 =VAF1 +VAF2s s sλ , 

 with sλ the ths diagonal element of as computed in step (4) during the last 

iteration. (See also Optimization step (5), and Correlations Transformed Variables 

for interpretation of 1 2 ).  

The Total Variance Accounted For for multiple nominal variables is the mean over 
dimensions, and for non-multiple variables the sum over dimensions. So, the total  
eigenvalue is 

1 2 1tr( )= VAF1 + VAF2s s

s s

p− ∑ ∑ . 

If there are no passive missing values,  the eigenvalues  are those of the correlation 
matrix (see the Correlations and Eigenvalues section) weighted with variable 
weights: 

w
jj j jjv=R R , and 1 2w w

jl lj jljv= =R R R  

If there are passive missing values, then the eigenvalues are those of the matrix 
1

c * cwm −′Q M Q ,  with 

( )1 2
* */( )c wn− ′ ′= −Q I M uu W u M Wu Q , 

(for Q see the Correlations and Eigenvalues section) which is not necessarily a 
correlation matrix, although it is positive semi-definite. This matrix is weighted 
with variable weights in the same way as R . 
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Variance Accounted For 
The Variance Accounted For table gives the VAF per dimension and per variable 
for centroid coordinates, and for non-multiple variables also for vector coordinates 
(see quantification section): 

Centroid Coordinates 

VAF  tr( )js j js j jsv ′= Y D Y . 

Vector Coordinates 

2VAFjs j jsv a= , for j J∉ . 

Correlations and Eigenvalues 

Before transformation 

1
c cwn− ′=R H WH , with cH weighted centered and normalized H .  

For the SVD of R  to compute the eigenvalues, first column and row j  are 

removed from R if j  is a supplementary variable, and then ijR is multiplied by 

( )1 2
i jv v . 

If passive missing treatment is applicable for a variable, missing values are imputed 
with the variable mode, regardless of the passive imputation specification.   

After transformation 

When all analysis variables are non-multiple, and there are no missing values, 
specified to be treated as passive, the correlation matrix is:  

1
wn− ′=R Q WQ , with j j jq G y= .  
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The first p  eigenvalues of R equal 1 2 . (See also Optimization step (5) and 

Model Summary for interpretation of 1 2 ).  

When  there are multiple nominal variables in the analysis, p correlation matrices  

are computed ( 1, ,s p= … ):   

1
s w s sn− ′=R Q WQ ,  

with js j j=q G y  for non-multiple variables  

and ( ) 1 2
js j js js j js

−
′=q G Y Y D Y  for multiple nominal variables.  

The ths eigenvalue of sR  is equal to 1 2
sλ  (see  Model Summary Table).  

If there are missing values, specified to be treated as passive, the mode of the 
quantified variable or the quantification of an extra category (as specified in syntax; 
if not specified, default (mode) is used) is imputed before computing correlations. 

Then the eigenvalues of the correlation matrix do not equal 1 2 (see Model 
Summary section). The quantification of an extra category for multiple nominal 
variables is computed as 

1)(k jsj +Y

1

i i is

i I i I

w w x

−

∈ ∈

 
 =
  
∑ ∑ , 

with I an index set recording which objects have missing values. 
 

For the quantification of an extra category for non-multiple variables first 

1)(k jsj +Y  is computed as above, and then 

1)(k jj +y

1

1 2 2
1)(w js js k jsj

s s

n a a

−

+

 
 =
  
∑ ∑ Y . 
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For the SVD of R  to compute the eigenvalues, first column and row j  are 

removed from R if j  is a supplementary variable, and then ijR is multiplied by 

( )1 2
i jv v . 

Object Scores and Loadings 

Normalization 

Normalization  partitions the first p singular values of 1 2
wn Q  over the objects 

scores X  and the loadings A  (for Q see the Correlations and Eigenvalues 

section). The singular value decomposition of 1 2
wn Q is 

1 2 1 2 1 2 2 2 2 2SVD( ) b a a b
w wn n n n′ ′= =Q K / . / . 

The first p singular values 1 2
p  equal 1 4 , with  as computed in step (4) 

during the last iteration. (See also Optimization step (5) and Model Summary for  

interpretations of 1 2 ).  

With 2 4b a
pn=X K and 2 4a b

pn=A L , ′XA  gives the best p -dimensional 

approximation of Q .  

During the optimization phase, variable principal normalization is used. Then, after 

convergence 1 2
w pn=X K and 1 4

p=A L . 

If variable principal normalization is requested, n =X X and n =A A , else 

1 2( 1) 4
n

b a
wn −=X X  

2 1 4( 1)
n

a b
wn −=A A , 

with (1 ) / 2a q= + , (1 ) / 2b q= − , and q  any real value in the closed interval [-1,1], 

except for independent normalization: then there is no q value and 1a b= = .  
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1q = −  is equal to variable principal normalization,  1q =  is equal to object 

principal normalization,  0q =  is equal to symmetrical normalization.   

For Q and singular values when not all variables have non-multiple scaling level, 
see the Correlations Transformed Variables section. 

Quantifications 

The centroid coordinates are jY  if variable principal normalization is requested, 

else the centroid coordinates are computed as 1
nj j

− ′D G WX .  

For multiple nominal variables the quantifications are the centroid coordinates. For 
non-multiple variables the quantifications jy  are displayed, and the vector 

coordinates n jj ′y a . 

If a category is only used by supplementary objects (i.e. treated as a passive 
missing), only centroid coordinates are displayed for this category, computed as  

1 2 1
( ) nj k w jk i

i I

n n−

∈

= ∑y x  

where ( )j ky is the thk row of jY , jkn is the number of objects that have category 

k ,and I as n index set recording which objects are in category k . 

Residuals 
For non-multiple variables, Residuals gives a plot of  the quantified variable j  

( j jG y ) against the approximation, jXa . For multiple variables plots per 

dimension are produced of j jsG Y  against the approximation sX . 

Projected Centroids 

The projected centroids of variable l on variable j , j J∉ ,are 

1 2( )l j j j
−′Y a a a    
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